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CHAPTER 1 AN INTRODUCTION TO ORDER 

The macroscopic orientational order parameter, chirality, and dielectric permittivity are of 

primary interest to this dissertation. In this chapter, I start with an introduction to molecular order, 

the most common liquid crystalline phases, and those phases that are relevant to this dissertation. 

Both the microscopic and macroscopic orientational order parameters will then be discussed. 

Finally, the Landau free energy expansion will be explained along with Pierre de Gennes’ 

application of it to nematic order.  

1.1 Molecular Order and Liquid Crystalline Phases 

At the introductory level, it is taught that there are three phases of matter: solid, liquid, and 

vapor 1-3. While this is a useful starting point, it is an incomplete picture. There are substances that 

have many more phases. 

There is a class of molecules called liquid crystals. Upon melting from the crystalline solid 

toward the isotropic liquid, there exists a continuum of phases. Liquid crystals are liquid in that 

they are nearly incompressible fluids. However, when observed with cross-polarized microscopy, 

they exhibit patterns reminiscent of solid crystals. These phases are also referred to as mesophases.  

A more complete picture views each mesophase as having some degree of long-range 

positional order as well as orientational order. The orientational order can be described by a 

director 𝑛̂. The director defines the average orientation of the long molecular axis. Upon melting, 

degrees of order are gradually lost. Figure 1.1 illustrates an example of this loss of order upon 

increasing the temperature. 
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Figure 1.1: An example phase sequence. 

 

The degrees of order are, moving from left to right:  

 Crystalline Solid: Three dimensions of positional order plus orientational order 

 Smectic A: One dimension of positional order (that is, a one-dimensional crystal) plus orientational order within each 

layer.  

 Nematic: No positional order, only orientational order. The average orientation can be defined with respect to the 

director 𝑛̂. 

 Isotropic Liquid: Neither long range positional nor orientational order. 

 

1.1.1 Common types of Mesophases: Achiral Nematics and Smectics 

Mesophases are generally classified as either lyotropic (having an explicit dependence on 

concentration) or thermotropic (having an explicit dependence on temperature). The scope of this 

dissertation is on thermotropic liquid crystals. Thermotropic mesophases can be further divided 

into three broad categories: columnar (C), smectic (S), and nematic (N). The columnar phases arise 

when the constituent molecules have a disc-like geometry and form columned structures. In 

contrast, the samples under investigation are geometrically rod-like and have a rigid core. The 

smectic phases are layered structures with positional order in one direction and orientational order 

throughout. The nematic phase has only orientational order. A description of nematic and smectic 

phases can be seen in Figure 1.1. Figure 1.2 gives two examples of liquid crystals with nematic 

ordering. Although smectic phases are present in some of my samples, the focus of this dissertation 

is primarily on nematics. 
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    (a) Hexyl-cyano-biphenyl (6CB) 

 

   (b) Octyl-cyano-biphenyl (8CB) 

 

Figure 1.2: Examples of achiral nematic (N) liquid crystals. These chemical structure images are taken from the Royal Society 

of Chemistry’s online database 4, 5.  

 

Although both 6CB and 8CB are from the same nCB series, 6CB has only a nematic phase while 8CB has both a nematic and a 

smectic A phase 4. The image of 8CB was reformatted to display horizontally 5. 

 

1.1.2 Chiral Phases: Cholesteric and Blue Phases 

Molecules can be chiral (i.e., they lack mirror symmetry). When chirality is present in a 

nematic system, the director 𝑛̂ is helically distorted resulting in a non-uniform alignment. The 

periodicity of this rotation around the helical axis is called the pitch. These are generally referred 

to as chiral nematics (N*). Traditionally chiral nematics are referred to as cholesterics (CH) 

because the first ones discovered were cholesteryl esters. A schematic of the chiral nematic phase 

is seen in Figure 1.3. Example cholesteric molecules are seen in Figure 1.4.  

In the limit of small pitch, high chirality, the tendency to twist becomes greater. This leads 

to the formation of a double twist structure that has a lower free energy than a single twist structure. 

At high chirality, the helical axis no longer is restricted to follow a precession about a single axis 

3. The helical precession is simultaneously allowed in all directions perpendicular to the director 3, 

6. This can result in three additional phases appearing between the chiral nematic and isotropic 

phases. These three phases are called blue phase I (BPI), II (BPII), and III (BPIII). They were 

named for what was at first observed as predominately blue platelets that form and are seen under 

reflected light 7.  
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All three blue phases are optically isotropic. The lower temperature blue phases I and II 

are cubic in structure. Blue phase III is amorphous 3, 9.  

The first materials studied that exhibit blue phases had blue-phase temperature ranges as 

narrow as a tenth of a degree 10-13. Modern materials and mixtures can have blue phase temperature 

widths from 10 K to 60 K 14. In order to verify that blue phases are thermodynamically distinct, 

heat capacity measurements are taken. The heat capacity measurements for blue phases I, II, and 

III for two chiral nematic liquid crystals are shown in Figure 1.5. Figure 1.5a shows a narrow BPIII 

range. Figure 1.5b shows a wide BPIII range. 

  

 

Figure 1.3: Schematic of the cholesteric (i.e., Chiral Nematic) phase from Chandrasekhar 8. 

 

Each vertical plane is schematic of the direction 𝑛̂ of the molecules at given location along the helical axis 𝑧̂. The orientation 

director 𝑛̂ rotates around the helical axis 𝑧̂. The pitch p of the rotation is along the helical axis 𝑧̂. 
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(a)  Cholesteryl chloride (CC) 

 

 

 
 

(b) Cholesteryl nonanoate (CN) 

 

 

 
 

(c)  Cholesteryl oleyl carbonate (COC) 

 

 
 

(d) (S-(+)4-(2’-methylbutyl)phenyl 4’-n-

octylbiphenyl-4-carboxylate (CE8) 

 

 

 
 

Figure 1.4: Examples of chiral nematic (N*) liquid crystals. The chemical structure images are taken from the both Sigma-

Aldrich and the Royal Society of Chemistry’s online databases 15-18. 

 

The first N* materials were cholesteryl esters; because of this, chiral nematic molecules are interchangeably referred to as 

cholesterics. Examples a, b, and c are cholesteryl esters 15-17. Example (d) is a cholesteric that is not a cholesteryl ester 18. 
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(a) Cholesteryl nonanoate measurements from Thoen et. al. 13. It has blue phases that are only a few tenths of a degree 

wide 13. Its chemical structure can be seen in Figure 1.4. 

                                  

(b) A mixture of CE8 and CdSe, a non-liquid cyrstalline nano-particle, measurements from Karatairi et. al. 14. The 

temperature range for blue phase III can be up to 10 K, and blue phase II is not present 14. Its chemical structure is 

seen in Figure 1.4. 

 

 

Figure 1.5: Thermodynamic distinction of the blue phases using Adiabatic Scanning Calorimetry from two other groups 13, 14. A 

distinct peak is seen at each phase transition. 
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1.2 Describing Nematic Order 

As already mentioned in Section 1.1, a given phase is characterized by the degree of 

positional and orientational order of each constituent molecule relative to another. The extent of 

both types of order for each phase is quantified by what is referred to as an order parameter. Once 

quantified, this parameter is used in a free energy expression to determine the thermodynamic 

properties of a substance. Traditionally, this parameter is required to be zero in a purely disordered, 

isotropic state and non-zero in an anisotropic state.  

Furthermore, the degree of short range order is dependent on a correlation length. The 

following equation describes the temperature dependence of a typical correlation length near a 

critical temperature T*. 

 𝜉 = 𝜉0√
𝑇∗

𝑇−𝑇∗
     (1.1) 

The parameter 𝜉0, called the bare correlation length, is about the size of a molecule. 

1.2.1 Orientational Order: The Microscopic Approach 

In the nematic phase, only orientational order exists. In Figure 1.1 for the nematic phase, 

each molecule is modeled as a rigid rod. An angle 𝜃𝑖 is defined between each ith molecule’s long 

axis and the overall director axis 𝑛̂. With this model, the constituent molecules are not expected to 

distinguish between 𝜃𝑖  and 𝜃𝑖  + π. For this reason, the second Legendre polynomial has 

traditionally been used as the microscopic order parameter S noted in Equation 1.2 below. It is 

insensitive to a π rotation and is zero when the distribution of 𝜃𝑖 ′ is completely random – that is, 

isotropic: 

𝑆 =  〈
3

2
𝑐𝑜𝑠2𝜃 −

1

2
〉.    (1.2) 
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Grandjean used this definition in 1917 when he applied the formalism of the theory of magnetism 

to anisotropic liquids 19. Tsvetkov also utilized this definition in his 1942 paper which discussed 

anisotropic liquid phases 20. 

Subsequent microscopic mean field theories were developed around this order parameter 

21. In these theories, the constituent molecules were treated as simple, rigid rods. Maier and Saupe 

considered the primary intermolecular interaction to be attractive dispersion forces while Onsager 

took the opposite approach of the primary interaction being repulsive 21. However, these theories 

suffered from the oversimplification of both the geometry of each molecule and the intermolecular 

interactions between each molecule. Fluctuations were also not taken into account 3. This leads to 

only a qualitative understanding of the characteristics of a given mesophase. While these models 

predicted transitions, the quantitative results were not always accurate. 

Defining the order parameter with respect to a distribution of molecular angles as in 

Equation 1.2 is impractical to measure, since real nematic liquid crystals are not rigid rods. Since 

liquid crystals tend to have long hydrocarbon chains, every carbon-carbon pair would have to be 

defined by its own angle of alignment. This would lead to each individual molecule having its own 

internal distribution of angles while being a part of a broader distribution of angles for the entire 

sample. 

1.2.2 Orientational Order: The Macroscopic Approach 

Under some conditions, a phenomenological approach that is independent of molecular 

details is preferred. An approach developed around quantitatively describing macroscopic 

phenomena is more practical than finding a distribution of molecular angles. Light scattering, heat 

capacity, dielectric permittivity, and magnetic susceptibility are examples of bulk phenomena that 
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can be calculated from such an approach. The following subsections examine a free energy 

expansion using a macroscopic order parameter. 

1.2.2.1 The Macroscopic Order Parameter and the Landau Free Energy Expansion 

L.D. Landau first proposed a mean-field model for phase transitions in which a 

thermodynamic potential 𝛷  (such as the free energy) is expressed as a power series of a 

macroscopic order parameter η 22. This parameter η must be sensitive to the degree of order and 

symmetry of a phase: 

𝛷 = 𝛷0 + 𝛼𝜂1 + 𝐴 𝜂2 + 𝐵𝜂3 + 𝐶𝜂4 + 𝑂(𝜂5).   (1.3)  

The explicit dependence of 𝛷 on thermodynamic quantities such as temperature and pressure is 

contained within the coefficients α, A, B, C, etc. Typically, 𝛼, B, and C are constants while A is 

taken to be a linear function of temperature such that 𝐴 = 𝐴0(𝑇 − 𝑇𝑐), where 𝑇𝑐 is the critical 

temperature 22. 

There are only two conditions placed on the order parameter η. First, all powers of η in the 

expansion of Equation 1.3 must be rotationally invariant scalars. Second, all terms allowed by 

symmetry must be included.  

The order parameter η could be a scaler, vector, or a second rank tensor. If η were a scalar 

(such as a density modulation), then any power of η is allowed due to any power being rotationally 

invariant and already a scalar. If η were a vector, however, (such as a magnetization 𝑀𝛼), then 

only even powers of η would be allowed resulting in a free energy symmetric about the origin. It 

is not possible to construct a rotationally invariant scalar from an odd power of a vector. Lastly, if 

η were a second rank tensor (such as magnetic susceptibility 𝜒𝛼𝛽
𝑚 , or electric susceptibility 𝜒𝛼𝛽

𝑒 ), 

then all powers of η would be allowed. The first order rotationally invariant term would be simply 
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the trace of the tensor. The second order rotationally invariant term would be the inner product of 

the tensor with itself followed by taking the trace, and so on. 

1.2.2.2 The Free Energy Expansion Applied to Nematic Liquid Crystals: P. G. de Gennes 

Pierre de Gennes applied Landau’s theory to nematic liquid crystals. He chose the 

anisotropic part 𝑄𝛼𝛽 of the full dielectric permittivity tensor 𝜀𝛼𝛽 as the nematic order parameter. 

The choice of the tensor order parameter was such that it was symmetric, traceless and vanished 

in the isotropic phase. From this choice, the parameter 𝑄𝛼𝛽 was found by subtracting out any 

isotropic contribution 𝜀 ̅𝛿𝛼𝛽 from 𝜀𝛼𝛽, 

𝑄𝛼𝛽 = 𝜀𝛼𝛽 −
1

3
𝜀 ̅𝛿𝛼𝛽.   (1.4) 

Here,  𝛿𝛼𝛽 represents the identity matrix. Equation 1.4 defines 𝑄𝛼𝛽 such that it vanishes in the 

isotropic phase. 

The resultant free energy expression would be given as, 

𝐹 = 1

2
𝐴 𝑄𝛼𝛽𝑄𝛽𝛼 − 

1

3
𝐵 𝑄𝛼𝛽𝑄𝛽𝛾𝑄𝛾𝛼 +

1

4
𝐶 (𝑄𝛼𝛽𝑄𝛽𝛼)

2.  (1.5) 

Due to de Gennes’ additional requirement that the isotropic contribution be subtracted out, the 

linear term is absent in the free energy expansion. 

1.2.2.3 Vector versus Tensor Order Parameter 

It is instructive to consider the consequences between a free energy with and without a 

cubic term. If the order parameter η were a vector 𝑀𝛼, there would be no odd powers of 𝑀𝛼, as no 

rotationally invariant scalar could be made. Equation 1.3 rewritten for this case would be, 

𝐹 =
1

2
𝐴0(𝑇 − 𝑇𝑐) 𝑀𝛼𝑀𝛼 +

1

4
𝐶(𝑀𝛼𝑀𝛼)

2.  (1.6) 

The transition temperature 𝑇𝑐 marks the boundary between two phases. Equation 1.6 could also 

represent the free energy expansion for a tensor in which the coefficient of the third order term is 
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zero. Again, Equation 1.5 represents the free energy expansion for a tensor order parameter in 

which the linear term is zero and the third order term is non-zero. The Equations 1.5 and 1.6 will 

be plotted in Figure 1.6. 

A symmetric free energy in which no odd powers in η are present leads to a continuous, 

second order transition. At a second order phase transition the first derivatives of the free energy 

are continuous 21. 

An asymmetric free energy in which there is at least a cubic term leads to a first order phase 

transition. That is, a discontinuity in one of the first derivatives of the free energy appears. This 

includes discontinuities in the entropy and the order parameter. In the case of a nematic liquid 

crystal, the transition from isotropic liquid is weakly first order 21. 
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 (a) 𝐹 =
1

2
𝐴0(𝑇 − 𝑇𝑐) 𝑀

2 +
1

4
𝐶𝑀4 (b) 𝐹 =

1

2
𝐴0(𝑇 − 𝑇𝑐) 𝑄

2 −
1

3
𝐵𝑄3 +

1

4
𝐶𝑄4 

𝑻 > 𝑻𝒄 

  

𝑻 = 𝑻𝒄 

  

𝑻 < 𝑻𝒄 

  

Order 

Parameter 

vs 

Temperature 

  

Figure 1.6: The free energy expansion for simulated data. 

 

(a) A symmetric free energy leads to a continuous, 2nd order phase transition. 

(b) An asymmetric free energy with no linear term leads to a discontinuous, 1st order phase transition. 
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1.3 Goals of This Dissertation 

Liquid crystals are model systems for studying phase transitions. The varying degrees of 

positional and orientational order that exist lead to interesting behaviors. When chirality is present, 

unexpected phases such as the cubic blue phases I and II or the amorphous blue phase III may 

show up. Furthermore, where bulk behavior is concerned, it is more practical to use a macroscopic 

order parameter and to utilize the Landau-de Genne free energy expansion as a predictive tool. 

This tool will be used in the upcoming sections to generalize the order parameter as well as to 

study the high chirality limit where blue phases appear. 

This dissertation has two goals. The first goal is to show a model that generalizes the order 

parameter to the full dielectric permittivity tensor 𝜀𝛼𝛽 . The nematic order parameter 𝑄𝛼𝛽  will 

retain its properties as defined above, but now its fluctuations will be allowed to couple with the 

isotropic part. This results in describing pretransitional anomalies that show up in published 

dielectric data. The dielectric pretransitional anomalies are not currently predicted by theory. 

The second goal of this dissertation is to look at this pretransitional effect for chiral nematic 

systems. Few dielectric studies have been done on the isotropic to cholesteric phase transition. 

Only one has looked at the effect of varying chirality 23. In addition to what we usually call the 

isotropic phase, there are additional isotropic phases called the blue phases. The dielectric response 

of a variable chiral system is studied through mixtures of two oppositely handed chiral nematic 

molecules. By varying the chirality, blue phases can be studied from where they dominate to where 

they disappear in the low chirality limit. 
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CHAPTER 2 DIELECTRIC THEORY AND A GENERALIZED NEMATIC ORDER 

PARAMETER 

The relative dielectric permittivity 𝜀𝛼𝛽 contains the macroscopic order parameter 𝑄𝛼𝛽. The 

theories behind the frequency and thermal dependence of 𝜀𝛼𝛽 are needed to understand the results 

of this dissertation. The theory behind the dielectric permittivity’s frequency response is well 

established and will be discussed in Section 2.2. The thermal response for the isotropic to nematic 

phase transition, however, is not well described by current theory. It will be understood from the 

context of a generalization of the macroscopic order parameter in Section 2.3. The end of this 

chapter will show the full dielectric permittivity 𝜀𝛼𝛽 as the generalized order parameter. 

2.1 Orientational Order and Electric Polarization 

When materials, such as liquid crystals, are exposed to an externally applied field 𝐸𝛽, the 

medium responds by polarizing. A quantity called the relative dielectric permittivity tensor 𝜀𝛼𝛽 is 

used to measure this polarization.  

Irrespective of the frequency (whether it is a low frequency AC field, a DC field, or a beam 

of light), the field inside the material is expressed by a displacement field 𝐷𝛼 . The induced 

polarization of the molecules is expressed by the electric polarization density 𝑃𝛼. The displacement 

field is the sum of the electric polarization density 𝑃𝛼 and the inner product of the identity matrix 

𝛿𝛼𝛽 with the applied electric field 𝐸𝛽 multiplied by the constant permittivity of free space 𝜀0: 

𝐷𝛼 = 𝜀0𝛿𝛼𝛽𝐸𝛽 + 𝑃𝛼.  (2.1) 

The polarization density 𝑃𝛼 is modeled as the inner product of the applied field 𝐸𝛽 with a material 

property 𝜒𝛼𝛽 multiplied by the constant permittivity of free space 𝜀0. The term 𝜒𝛼𝛽 is called the 

electric susceptibility tensor: 

𝑃𝛼 = 𝜀0𝜒𝛼𝛽𝐸𝛽. (2.2) 
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The electric polarization density 𝑃𝛼 can be attributed to two main mechanisms: the charge 

displacement of individual charges and the orientational polarization of already present dipoles 24-

27. Charge displacement is a fast process (measured around infrared, visible, or ultraviolet 

frequencies). For polar molecules (which this dissertation deals with), the slower orientational 

polarization dominates at lower frequencies. 

When 𝐸𝛽 is an applied AC field, the response of a mechanism is counteracted by viscous 

forces. For a given mechanism, there is a characteristic (i.e., relaxation) frequency 𝑓𝑟. At 𝑓𝑟, the 

polarization field is out of phase with the applied field by 90°. Also, at 𝑓𝑟, the amount of energy 

from 𝐸𝛽 that is absorbed and then converted into heat is maximum 24, 26. Above 𝑓𝑟, viscous forces 

begin to dominate.  

If 𝜒𝛼𝛽  is measured at a frequency 
𝜔

2𝜋
≪ 𝑓𝑟  (where 𝜔 is the angular frequency), then the 

mechanism under investigation fully contributes to the electric polarization density 𝑃𝛼. If 𝜒𝛼𝛽 is 

measured at a frequency 
𝜔

2𝜋
≈ 𝑓𝑟, then the mechanism under investigation is inhibited by viscous 

forces. If 𝜒𝛼𝛽  is measured at a frequency 
𝜔

2𝜋
≫ 𝑓𝑟 , then the mechanism under investigation 

contributes nothing to the measured polarization density 𝑃𝛼 due to the molecules being unable to 

follow the field 25, 26. 

2.2 The Frequency Dependence of the Dielectric Permittivity 

Dielectric permittivity is the macroscopic orientational order parameter. The relative 

dielectric permittivity is a function of both frequency and temperature. In this section, the 

frequency dependence of 𝜀𝛼𝛽 is explored. The dispersion relationships to be used are presented. 

In Section 2.3, the temperature dependence of 𝜀𝛼𝛽 at a constant frequency is of interest to describe 

how the order of a sample evolves from one phase to the next. 
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Equations 2.1 and 2.2 are the starting points to understanding permittivity. To begin, 

Equation 2.2 is substituted into Equation 2.1 to give a direct relationship between an applied field 

𝐸𝛽 and the materials response 𝐷𝛼: 

𝐷𝛼 = 𝜀0(𝛿𝛼𝛽 + 𝜒𝛼𝛽)𝐸𝛽.  (2.3a) 

From Equation 2.3a, the relative dielectric permittivity tensor is defined as the sum of the identity 

matrix and the electric susceptibility tensor:  

𝜀𝛼𝛽 = 𝛿𝛼𝛽 + 𝜒𝛼𝛽.  (2.3b) 

After an applied AC field 𝐸𝛽(𝑡) = 𝐸𝛽0𝑒
𝑖𝜔𝑡 is turned on at time 𝑡 = 0, it takes time for the 

field 𝐷𝛼(𝑡) inside the material to reach a steady state equilibrium. The way in which a steady state 

is achieved and the transient effects fade away is called the decay function 𝜈𝛼𝛽(𝑡)  with a 

characteristic relaxation time 𝜏. The decay function 𝜈𝛼𝛽(𝑡) can be either for a single relaxation 

process or for a distribution of processes. The relaxation frequency 𝑓𝑟 mentioned in Section 2.1 is 

related to this time constant by 𝜏 = (2𝜋𝑓𝑟)
−1. Superposition can be applied to find the value of 

𝐷𝛼(𝑡) for all previous instances that 𝐸𝛽(𝑡) was applied including transient effects 24, 26. Equation 

2.4a then 2.4b shows this integral form: 

D𝛼(𝑡) = 𝜀0 (𝜀𝛼𝛽
∞ 𝐸𝛽(𝑡) + ∫ 𝑑𝑢

∞

 0
𝜈𝛼𝛽(𝑢)𝐸𝛽(𝑡 − 𝑢)).  (2.4a) 

Equation 2.4a leads to a Fourier transform into the frequency domain where the relative dielectric 

permittivity 𝜀𝛼𝛽(𝜔) is a complex quantity that can be broken into a real and an imaginary part 24: 

𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
∞ + ∫ 𝑑𝑢

∞

 0
𝜈𝛼𝛽(𝑢)𝑒

−𝑖𝜔𝑢, (2.4b) 

𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
′ − 𝑖𝜀𝛼𝛽

′′ .   (2.4c) 

The constant parameter 𝜀𝛼𝛽
∞  in Equation 2.4b is the instantaneous, high frequency contribution to 

the permittivity. In Equation 2.4c, the real part 𝜀𝛼𝛽
′  is the relative dielectric strength. The imaginary 
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part 𝜀𝛼𝛽
′′  is the dielectric loss. By convention, Equation 2.4c is written with a negative sign to 

ensure that 𝜀𝛼𝛽
′′  is a positive quantity. The reasoning will be evident after breaking Equation 2.6e 

into real and imaginary parts. 

The following subsections discuss the types of relaxation. The simplest model is Debye 

relaxation. The two slightly more complicated models are the Cole-Cole and Cole-Davidson 

relaxation processes. The most complicated and empirically determined model is the Havriliak-

Negami model. Section 2.2 will conclude with low frequency contributions and how they are 

accounted for. 

2.2.1 Debye Relaxation 

Peter Debye proposed a model in which a single relaxation process is assumed and the 

molecule is spherical 28, 29. The decay function 𝜈𝛼𝛽(𝑡) in Equations 2.4a and 2.4b is assumed to be 

exponential with the characteristic time 𝜏:  

𝜈𝛼𝛽(𝑡) = 𝜈𝛼𝛽
0 𝑒

−𝑡

𝜏 .  (2.5)  

The relaxation time can be related to various properties such as the modulus of rigidity or the 

viscosity 24. Substituting Equation 2.5 into Equation 2.4b gives the Debye relaxation equation, 

𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
∞ +

𝜏𝜈𝛼𝛽
0

1+𝑖𝜔𝜏
. (2.6a) 

The constant 𝜏𝜈𝛼𝛽
0  comes from carrying out the integration in Equation 2.4b with Equation 2.5. 

The magnitude of the decay function 𝜈𝛼𝛽
0  from Equation 2.5 can be found by looking at the 

polarization density 𝑃𝛼(𝑡) from Equation 2.2 and its time derivative  𝑃𝛼,𝑡(𝑡). The polarization 

eventually approaches a steady state value 𝑃𝛼
𝑠𝑡𝑎𝑡𝑖𝑐 with a steady state susceptibility 𝜒𝛼𝛽(0) = 𝜒𝛼𝛽

0 : 

𝑃𝛼
𝑠𝑡𝑎𝑡𝑖𝑐 = 𝜀0𝜒𝛼𝛽

0 𝐸𝛽.  (2.6b) 
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For an overdamped system perturbed from equilibrium, the system will tend to relax at a 

rate of 1/𝜏. For a Debye process, the time derivative 𝑃𝛼,𝑡 of the polarization density is proportional 

to the deviation of polarization density 𝑃𝛼 from the steady state value 𝑃𝛼
𝑠𝑡𝑎𝑡𝑖𝑐 , as seen in Equation 

2.6c: 

𝑃𝛼,𝑡 =
𝑃𝛼
𝑠𝑡𝑎𝑡𝑖𝑐−𝑃𝛼

𝜏
. (2.6c) 

The magnitude of the decay function 𝜈𝛼𝛽
0  is 

𝜒𝛼𝛽
0

𝜏
. The time derivative is replaced with 𝑖𝜔. 

A dispersion relation identical in form to Equation 2.6a is found by substituting the functional 

forms of Equations 2.2 and 2.6b into Equation 2.6c, 

𝜒𝛼𝛽(𝜔) = ∆𝜒𝛼𝛽
0 . (2.6d) 

Equations 2.6a and 2.6d are the same for a single relaxation process of spherical molecules that 

relax exponentially to a steady state: 

𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
∞ +

∆𝜒𝛼𝛽
0

1+𝑖𝜔𝜏
. (2.6e) 

The real and imaginary parts 𝜀𝛼𝛽
′  and 𝜀𝛼𝛽

′′  of the Debye relaxation (Equation 2.6e) can be separated. 

I will follow the form of Equation 2.4c above, 𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
′ − 𝑖𝜀𝛼𝛽

′′ : 

𝜀𝛼𝛽
′ (𝜔) = 𝜀𝛼𝛽

∞ +
∆𝜒𝛼𝛽

0

1+(𝜔𝜏)2
, (2.7a) 

𝜀𝛼𝛽
′′ (𝜔) =

∆𝜒𝛼𝛽
0 𝜔𝜏

1+(𝜔𝜏)2
.  (2.7b) 

Cole and Cole observed that, when plotting Debye’s dispersion relations 𝜀𝛼𝛽
′ (𝜔)  and 

𝜀𝛼𝛽
′′ (𝜔) in the complex plane, a semicircle with radius 

∆𝜒𝛼𝛽
0

2
 is formed 29. By plotting 𝜀𝛼𝛽

′′ (𝜔) 

versus 𝜀𝛼𝛽
′ (𝜔), the explicit frequency dependence is factored out. This can be seen by adding the 

squares of Equations 2.7a and 2.7b: 



www.manaraa.com

19 

 

 

(𝜀𝛼𝛽
′ − (𝜀𝛼𝛽

∞ +
∆𝜒𝛼𝛽

0

2
))

2

+ ( 𝜀𝛼𝛽
′′ )

2
= (

∆𝜒𝛼𝛽
0

1+(𝜔𝜏)2
−

∆𝜒𝛼𝛽
0

2
)
2

+ ( 
∆𝜒𝛼𝛽

0 𝜔𝜏

1+(𝜔𝜏)2
)
2

, (2.8a) 

(𝜀𝛼𝛽
′ − (𝜀𝛼𝛽

∞ +
∆𝜒𝛼𝛽

0

2
))

2

+ ( 𝜀𝛼𝛽
′′ )

2
= (

∆𝜒𝛼𝛽
0

2
)
2

.    (2.8b) 

In Equation 2.8b, the explicit frequency dependence is cancelled out from Equation 2.8a. Equation 

2.8b is the equation of a circle with radius 
∆𝜒𝛼𝛽

0

2
 shifted to the right by 𝜀𝛼𝛽

∞ +
∆𝜒𝛼𝛽

0

2
. For Debye 

relaxation, the parameter ∆𝜒𝛼𝛽
0  is the diameter of this semicircle. 

2.2.2 Cole-Cole Relaxation 

Not all relaxation phenomena follow Debye relaxation. In their 1941 publication, Kenneth 

Cole and Robert Cole observed that some relaxation behaviors appeared as shifted semicircles 30. 

An empirical modification to Debye’s relaxation (Equation 2.6e) has an additional exponent on 

the term 𝑖𝜔𝜏, 

𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
∞ +

∆𝜒𝛼𝛽
0

1+(𝑖𝜔𝜏)𝛼
.  (2.9) 

The real and imaginary parts of Equations 2.7a and 2.8b become: 

𝜀𝛼𝛽
′ (𝜔) = 𝜀𝛼𝛽

∞ +
∆𝜒𝛼𝛽

0 (1+(𝜔𝜏)𝛼𝑐𝑜𝑠(
𝜋

2
𝛼))

1+(𝜔𝜏)2𝛼+2(𝜔𝜏)𝛼𝑐𝑜𝑠(
𝜋

2
𝛼)

,  (2.10a) 

𝜀𝛼𝛽
′′ (𝜔) =

∆𝜒𝛼𝛽
0 ((𝜔𝜏)𝛼𝑠𝑖𝑛(

𝜋

2
𝛼))

1+(𝜔𝜏)2𝛼+2(𝜔𝜏)𝛼𝑐𝑜𝑠(
𝜋

2
𝛼)

.   (2.10b) 

Just as Debye relaxation in the complex plane shows a semicircle, it was found that the 

depressed semicircles were circles shifted downward on the imaginary axis 𝜀𝛼𝛽
′′ . Going through 

the same process of eliminating 𝜔𝜏 and plotting 𝜀𝛼𝛽
′′  vs 𝜀𝛼𝛽

′  gives the equation of a circle shifted 

to the right along the real axis by (𝜀𝛼𝛽
∞ +

∆𝜒𝛼𝛽
0

2
) and down on the imaginary axis b: 
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(𝜀𝛼𝛽
′ (𝜔) − (𝜀𝛼𝛽

∞ +
∆𝜒𝛼𝛽

0

2
))

2

+ (𝜀𝛼𝛽
′′ (𝜔) + 𝑏)

2
= (𝑅)2.  (2.11) 

The shift downward is, 

𝑏 =
∆𝜒𝛼𝛽

0

2
𝑡𝑎𝑛 (

𝜋

2
(1 − 𝛼)).  (2.12a) 

The diameter of the circle increases from the Debye case to, 

R=
∆𝜒𝛼𝛽

0

2 𝑠𝑖𝑛(
𝜋

2
𝛼)

.    (2.12b) 

The parameter ∆𝜒𝛼𝛽
0  now describes the width of the arc of the circle that begins and ends 

at 𝜀𝛼𝛽
′′ =0. The angle 

𝜋

2
(1 − 𝛼) is from the real axis rotated downward. For both the Debye and 

Cole-Cole cases, ∆𝜒𝛼𝛽
0  can be called the dielectric strength. Cole-Cole relaxation reduces to Debye 

relaxation when 𝛼 = 1. 

Figure 2.1 shows the cases in which Equation 2.10a and 2.10b are plotted versus frequency. 

Part (a) of Figure 2.1 shows Equation 2.11 plotted. A simulated relaxation frequency 𝑓𝑟 of either 

5 kHz or 100 kHz is chosen. As will be seen in Chapter 5, a typical relaxation frequency in the 

isotropic phase was greater than 100 kHz. 
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(a) A Cole-Cole Plot: 𝜀” vs 𝜀′ 
 

 The leftmost data points correspond to 1 

MHz 

 The rightmost data points correspond to 20 

Hz 

 

 

(b) Relative Permittivity: 𝜀′ versus frequency. 

 

(c) Dielectric Loss: 𝜀” versus frequency. 

 

 
 

Figure 2.1: Cole-Cole Plot and the frequency dependence at difference values for α for simulated data. 

 

Equations 2.10a and 2.10b are plotted with simulated data as functions of frequency. The data are simulated for 𝜀𝛼𝛽 generated 

over 20 Hz to 1 MHz (the measuring capability of the apparatus).  

For all curves: 

 𝜀∞ = 0.1 

 ∆𝜒𝛼𝛽
0 = 0.9 

 𝑓𝑟 = 100 kHz. 
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2.2.3 Two Additional Types of Relaxation: Cole-Davidson and Havriliak-Negami 

There exist two additional empirical modifications to Debye’s relaxation model that are 

worthy to note but will not be used in this dissertation. R. H. Cole and Davidson proposed that the 

entire denominator be raised to an exponent 𝛽 31, 32: 

𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
∞ +

∆𝜒𝛼𝛽
0

(1+𝑖𝜔𝜏)𝛽
.  (2.12) 

This equation leads to an asymmetric curve in the complex plane. At frequencies below the 

relaxation frequency 𝑓𝑟 (the rightmost data for 𝜀” plotted versus 𝜀′), the curve follows a semicircle. 

Above 𝑓𝑟, the relationship between the imaginary part 𝜀𝛼𝛽
′′  and real part 𝜀𝛼𝛽

′  becomes more linear 

and less of a circular arc. The main limitation in using this model is that, in order to distinguish a 

Cole-Cole mechanism with two dielectric peaks immediately adjacent to one another from a Cole-

Davidson mechanism, a sufficient amount of high frequency data (i.e., 
𝜔

2𝜋
≫ 𝑓𝑟) must be collected. 

The second empirical modification is the Havriliak-Negami relaxation. This model 

combines Equations 2.9 and 2.12 33: 

𝜀𝛼𝛽(𝜔) = 𝜀𝛼𝛽
∞ +

∆𝜒𝛼𝛽
0

(1+(𝑖𝜔𝜏)𝛼)𝛽
.  (2.13) 

This model was applied mostly to large polymers such as polyvinyl acetal and polyvinyl 

chloroacetate. The Havriliak-Negami relaxation requires a sufficient measured frequency range on 

both sides of the relaxation frequency 𝑓𝑟 in order to distinguish between a single skewed peak and 

two adjacent peaks. As seen in Figure 2.2, it is difficult to distinguish between the case of part (a) 

(where there are two relaxation peaks with 𝛼 <1 and 𝛽 = 1) and the case of a single relaxation 

process in part (b). The molecules under investigation are relatively small compared to polymers. 

For this dissertation, parameter 𝛽 is fixed at one due to a low density of data collected. 
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(a) Cole-Cole Relaxation  

 

 Parameter α is noted on the Plots 

 Fixed Parameter 𝛽 = 1 

 

Double peak 

        Left Peak 

 𝜀∞ = 0.1 

 ∆𝜒𝛼𝛽
0 = 0.25 

 𝑓𝑓 = 100 kHz 

 

        Right Peak 

 𝜀∞ = 0.35 

 ∆𝜒𝛼𝛽
0 = 0.65 

 𝑓𝑟 = 5 kHz   

(b) Havriliak-Negami Relaxation. 

 

 Fixed Parameter 𝛽 = 0.5 

Single peak 

 𝜀∞ = 0.1 

 ∆𝜒𝛼𝛽
0 = 0.90 

 𝑓𝑟 = 100 kHz 

 

 

(c) Havriliak-Negami Relaxation. 

 

 Fixed Parameter 𝛽 = 0.5 for both peaks 

 

Double peak 

        Left Peak 

 𝜀∞ = 0.1 

 ∆𝜒𝛼𝛽
0 = 0.25 

 𝑓𝑟 = 100 kHz 

        

        Right Peak 

 𝜀∞ = 0.35 

 ∆𝜒𝛼𝛽
0 = 0.65 

 𝑓𝑟 = 5 kHz.  

 

 
 

Figure 2.2: Cole-Cole plot of simulated data comparing the relaxation types. 

 

The data are simulated for 𝜀𝛼𝛽 generated from 20 Hz to 1 MHz (the measuring capability of the apparatus). 

Part (a) shows the case of Cole-Cole relaxation with two relaxation peaks. Part (b) shows a single relaxation peak for Havriliak-

Negami relaxation. Part (c) shows a double relaxation peak for Havriliak-Negami relaxation. Cole-Davidson is shown where 

𝛽 < 1 and 𝛼 = 1. 
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2.2.4 Low-Frequency Contributions 

There are three types of undesirable contributions to dielectric measurements at low 

frequencies: Ionic impurities, electrode polarization, and internal interfacial polarization 

(Maxwell-Wagner-Sillars polarization). 

Ionic impurities are commonly present and only contribute to the measurement of the 

imaginary part of the relative dielectric permittivity 𝜀𝛼𝛽
′′ . It can be modeled as another relaxation 

process with a relaxation frequency that peaks below 1 Hz 25, 26. However, actual measurements 

rarely go to the peak frequency. The asymptotic function used to describe it is: 

𝜀𝛼𝛽
𝑖𝑜𝑛𝑖𝑐 =

𝜎𝛼𝛽
𝐷𝐶

𝑖𝜀0𝜔
,  (2.14) 

where the DC conductivity 𝜎𝛼𝛽
𝐷𝐶 represents the ionic contributions. 

For electrode polarization, the ions move within the field toward the electrodes then build 

up on the plates. This can contribute to both the real and imaginary parts of 𝜀𝛼𝛽(𝜔). Its behavior 

is like a Debye relaxation mechanism 25, 26. 

Lastly, the internal interfacial polarization occurs when the motion of migrating charges is 

impeded. This occurs in mixtures when electrically conducting regions are separated and prevented 

from being in contact with each other by non-conducting regions 34. It also behaves similar to a 

Debye relaxation mechanism. For measurements ranging between 10 Hz and 10 MHz, only a tail 

can be seen, much like that for ionic impurities in Equation 2.14 25. However, it also has a 

contribution to the real part of the dielectric permittivity 𝜀𝛼𝛽(𝜔)  that increases 𝜀𝛼𝛽
′  at low 

frequencies 34. Its behavior can be modeled with a 
1

𝜔
 function. 

In some of the liquid crystal literature, Equation 2.14 is empirically modified and low 

frequency behavior is accounted for with an exponent n on the frequency,  
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𝜀𝛼𝛽
𝑙𝑜𝑤𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

=
𝜎𝛼𝛽
0

𝑖𝜀0𝜔𝑛, (2.15) 

where “n” is a fitting parameter to account for various low frequency processes 26, 28, 35, 36. 
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Figure 2.3: Both the isotropic and nematic phases of pentyl-cyano-biphenyl (5CB). Data from Thoen et. al. 37. 

 

2.3 Temperature Dependence: Generalizing the Nematic Order Parameter 

2.3.1 Motivation  

The isotropic to nematic transition is weakly first order. This leads to short-range order 

effects having non-negligible contributions to various physical phenomena near the transition 
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temperature 3. The contributions are dependent upon a correlation length, as expressed in Equation 

1.1. As the transition temperature is approached, the correlation length increases. This should lead 

to various pretransitional behaviors. The phenomenological approach of de Gennes, presented in 

Chapter 1, predicts several pretransitional effects of which two examples are discussed. 

First, de Gennes predicted magnetic birefringence in the isotropic phase for nematic liquid 

crystals (LC). Nematics are easily aligned by both magnetic and electric fields, making them 

optically birefringent in the isotropic phase. When either an electric field 𝐸𝛽 or a magnetic field 

𝐻𝛽 is applied, Equation 1.5 would have an additional term 𝑄𝛼𝛽𝐸𝛼𝐸𝛽 (or 𝜒𝛼𝛽𝐻𝛼𝐻𝛽). Birefringence 

is predicted by minimizing the lowest-order terms in the free energy density of Equation 1.5 with 

the electric (or magnetic) field contributions added 3. 

Second, in light scattering experiments, as the transition temperature 𝑇𝑐 is approached, the 

intensity increases as (𝑇 − 𝑇∗)−1 . As the asymptotic critical temperature is approached, the 

correlation length becomes increasingly non-negligible 3. Likewise, in heat capacity experiments, 

as 𝜉 increases near the transition temperature, the heat capacity also anomalously increases. 

While recent experiments show pretransitional dielectric effects on the isotropic side of the 

isotropic to nematic phase transition, de Gennes theory does not predict pretransitional dielectric 

effects on the isotropic side near the isotropic to nematic phase transition 37-46. In Figure 2.3a, 

birefringent behavior is observed in the nematic phase as expected. When plotted on the same scale 

as the N phase, the isotropic phase appears almost linear. However, when the isotropic side is 

looked at more closely in Figure 2.3b, small but distinct pretransitional behavior in the form of 

deviations from linearity is observed 37. 
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2.3.2 A Generalized Nematic Order Parameter 

Although 𝑄𝛼𝛽 is a good choice for an order parameter, the rationale of subtracting out the 

isotropic part needs to be justified. Additionally, in field theory, all terms allowed by symmetry 

must be included. As can be seen from the Landau-de Gennes theory being applied to the smectic 

A-nematic transition, coupling is important to describe pretransitional behavior (i.e., ordering of 

one phase extending into another phase) 8. 

A minimal modification to the Landau-de Gennes order parameter is to include all terms 

encapsulated in the full dielectric permittivity tensor 𝜀𝛼𝛽 (contrary to Equation 1.14) and then to 

properly account for fluctuations in the free energy expansion 47:  

𝜀𝛼𝛽 = 𝑄𝛼𝛽 +
1

3
𝜀 ̅𝛿𝛼𝛽.   (2.16) 

The order parameter 𝑄𝛼𝛽 retains its original definition as the anisotropic contribution to 

the generalized order parameter in Equation 2.16. The average of 𝑄𝛼𝛽 would still be on average 

zero in the isotropic phase. However, fluctuations in 𝑄𝛼𝛽 can now properly couple to the isotropic 

part 𝜀 ̅𝛿𝛼𝛽. 

For the more general order parameter in Equation 2.16, the form of the free energy 

expansion would be similar to Equation 1.5. However, instead of expanding in powers of a 

traceless tensor 𝑄𝛼𝛽, the expansion would be in terms of the total permittivity 𝜀𝛼𝛽 which has a 

non-zero trace. Since a Landau type expansion allows for all rotationally invariant scalars to be 

included, higher order terms of the trace itself would be included. Moreover, as in the de Gennes 

model, a gradient term 𝐹𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 is needed to account for fluctuations of the anisotropic part 𝑄𝛼𝛽. 

With Equation 1.5 relabeled as 𝐹𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐, we have a general free energy expression with four 

parts: 
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𝐹𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 𝐹𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐+ 𝐹𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 + 𝐹𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + 𝐹𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡.  (2.17) 

Although the original order parameter 𝑄𝛼𝛽 is zero on average in the isotropic phase, its square is 

not. Gradient terms are still present. To lowest order, the gradient term is expressed as, 

𝐹𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
1

2
𝐿𝑄𝛼𝛽,𝛾𝑄𝛽𝛼,𝛾.  (2.18) 

As with any expansion, it is important to consider the minimal number of terms needed to 

adequately describe the system. If the minimal expansion does not describe the experimental data, 

higher order terms can then be reincorporated. Before proceeding, this new free energy can be 

made more manageable and simplified in the isotropic phase through reasonable approximations. 

First, for 𝐹𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐, it is conceivable that the cubic and fourth power terms in 𝜀 ̅describe important 

phenomena; however, they will be neglected for this research since deviations from 〈𝜀〉̅ are not 

expected to vary too much from the higher temperature background value 𝜀𝐵̅𝐺. Therefore, only 

second order terms in 𝜀̅ will be kept, as this allows for coupling. Second, for 𝐹𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐  and 

𝐹𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 in Equation 2.17, fluctuations about 𝑄𝛼𝛽 are expected to be quadratic in the isotropic 

phase. Only up to second order in 𝑄𝛼𝛽 is kept. Third, for fitting, it is useful to break up the isotropic 

term 𝜀 ̅into two additive parts as seen in Equation 2.19. The first term is a temperature dependent 

background 𝜀𝐵̅𝐺  describing the high temperature behavior in the absence of a phase transition 

while the second term is any deviation ∆𝜀̅ from that background as the isotropic to nematic 

transition is approached: 

𝜀̅ = 𝜀𝐵̅𝐺 + ∆𝜀.̅   (2.19) 

Taking these approximations into account leads to the free energy expression in Equation 

2.20a: 

𝐹𝐺𝑒𝑛𝑒𝑟𝑎𝑙
𝐴𝑝𝑝𝑟𝑜𝑥. = 1

2
𝐴𝑒𝑓𝑓𝑄𝛼𝛽𝑄𝛽𝛼 + ℎ∆𝜀𝑄̅𝛼𝛽𝑄𝛽𝛼 +

1

2
𝜇−1(∆𝜀)̅2 + 1

2
𝐿𝑄𝛼𝛽,𝛾𝑄𝛽𝛼,𝛾. (2.20a) 
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The coefficients ℎ and μ are combinations of the coefficients and 𝐴𝑒𝑓𝑓(𝑇) = 𝐴 − 2ℎ𝜀̅ + 𝑔𝜀̅2. The 

term ℎ in Equation 2.20a describes the curvature seen in Figure 2.3b. All data studied in this 

dissertation have negative, downward curvature. As will be more evident later on in this 

dissertation, it is convenient to define downward curvature as having a positive ℎ . For this, 

Equation 2.20a has the second term as +ℎ∆𝜀𝑄̅𝛼𝛽𝑄𝛽𝛼 to account for the negative curvature. 

Now that the free energy is in a more manageable form, it is minimized with respect to 

deviations ∆𝜀:̅ 

𝜕𝐹𝑔𝑒𝑛𝑒𝑟𝑎𝑙

𝜕∆𝜀̅
= ℎ𝑄𝛼𝛽𝑄𝛽𝛼 + 𝜇−1∆𝜀̅ = 0,     

∆𝜀̅ = −ℎ𝜇𝑄𝛼𝛽𝑄𝛽𝛼.       (2.20b) 

By allowing for 𝑄𝛼𝛽 to couple with the isotropic term, a prediction is made in Equation 

2.20b for pretransitional behavior in the dielectric permittivity. To the lowest order, the variation 

in permittivity ∆𝜀 ̅turns out to be directly proportional to 𝑄𝛼𝛽𝑄𝛽𝛼, the square of the anisotropic 

part of the order parameter. Combining Equations 2.20a and 2.20b gives the following lowest order 

form for the free energy: 

𝐹𝐺𝑒𝑛𝑒𝑟𝑎𝑙
𝐴𝑝𝑝𝑟𝑜𝑥. = 1

2
𝐴𝑒𝑓𝑓𝑄𝛼𝛽𝑄𝛽𝛼 −

1

2
𝜇ℎ2(𝑄𝛼𝛽𝑄𝛽𝛼)

2
+ 1

2
𝐿𝑄𝛼𝛽,𝛾𝑄𝛽𝛼,𝛾. (2.21) 

Fluctuations about 𝑄𝛼𝛽 are expected to be small in the isotropic phase, so it is justifiable to neglect 

the quartic term in 𝑄𝛼𝛽. While Equation 2.21 is re-expressed in terms of the original anisotropic 

component, quadratic fluctuations in 𝑄𝛼𝛽 in the isotropic phase are now properly accounted for. 

The fluctuations of 〈𝑄𝛼𝛽𝑄𝛽𝛼〉 remain to be calculated from Equation 2.21. It is convenient 

to convert to reciprocal q-space and then average. The nematic order parameter 𝑄𝛼𝛽  has five 

independent modes that are the same in the isotropic phase. Expanding over all five fluctuation 

modes in Fourier space, the quadratic term is 
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〈𝑄𝛼𝛽𝑄𝛽𝛼〉 = ∑ 〈𝑄̃𝛼𝛽(𝑞⃑)𝑄̃𝛽𝛼
∗ (𝑞⃑)〉𝑞⃑⃑ .   (2.22) 

The average of the gradient term 𝑄𝛼𝛽,𝛾𝑄𝛽𝛼,𝛾 is 

〈𝑄𝛼𝛽,𝛾𝑄𝛽𝛼,𝛾〉 = ∑ 𝑞2〈𝑄̃𝛼𝛽(𝑞⃑)𝑄̃𝛽𝛼
∗ (𝑞⃑)〉𝑞⃑⃑ .           (2.23) 

The expression for the free energy density in Fourier space for a single term in 𝑞 may then be 

expressed as 

ℱ𝑔𝑒𝑛𝑒𝑟𝑎𝑙,𝑞 =
1

2
(𝐴𝑒𝑓𝑓 + 𝐿𝑞2)〈𝑄̃𝛼𝛽(𝑞⃑)𝑄̃𝛽𝛼

∗ (𝑞⃑)〉.        (2.24) 

The equipartition theorem may now be invoked. Each term in q in Equation 2.24 is set equal to 

1

2
𝑘𝑏𝑇: 

ℱ𝑔𝑒𝑛𝑒𝑟𝑎𝑙,𝑞 =
1

2
𝑘𝑏𝑇 = 1

2
(𝐴𝑒𝑓𝑓 + 𝐿𝑞2)〈𝑄̃𝛼𝛽(𝑞⃑)𝑄̃𝛽𝛼

∗ (𝑞⃑)〉.        (2.25) 

After rearranging Equation 2.25, the average 〈𝑄𝛼𝛽𝑄𝛽𝛼〉 is found by integrating over Fourier space 

to the maximum wave-vector qmax: 

〈𝑄𝛼𝛽𝑄𝛽𝛼〉 = ∑ 〈𝑄̃𝛼𝛽(𝑞⃑)𝑄̃𝛽𝛼
∗ (𝑞⃑)〉𝑞⃑⃑ =

5𝑘𝑏𝑇4𝜋

(2𝜋)3
∫ 𝑑𝑞

𝑞2

𝐴𝑒𝑓𝑓+𝐿𝑞
2

𝑞𝑚𝑎𝑥

0
.        (2.26) 

After integrating, 〈𝑄𝛼𝛽𝑄𝛽𝛼〉 is found to be 

〈𝑄𝛼𝛽𝑄𝛽𝛼〉 =
5𝑘𝑏𝑇

2𝜋2
(
 𝑞𝑚𝑎𝑥

𝐿
) [1 − (√

𝐿

𝐴𝑒𝑓𝑓
𝑞𝑚𝑎𝑥)

−1

𝑎𝑟𝑐𝑡𝑎𝑛 (√
𝐿

𝐴𝑒𝑓𝑓
𝑞𝑚𝑎𝑥)].  (2.27) 

The factor of five in Equation 2.27 comes from all five modes of 𝑄𝛼𝛽 having the same average in 

the isotropic phase. The term √
𝐿

𝐴𝑒𝑓𝑓
 is the temperature dependent correlation length 𝜉 mentioned 

in Equation 1.1. Combining Equations 2.19 and 2.20b with the result of Equation 2.27 results in 

𝜀̅ = 𝜀𝐵̅𝐺 − ℎ𝜇
5𝑘𝑏𝑇

∗𝑞𝑚𝑎𝑥

2𝜋2𝐿

𝑇

𝑇∗
[1 − (𝑞𝑚𝑎𝑥𝜉0√

𝑇∗

𝑇−𝑇∗
)

−1

𝑎𝑟𝑐𝑡𝑎𝑛 (𝑞𝑚𝑎𝑥𝜉0√
𝑇∗

𝑇−𝑇∗
)]. (2.28) 

The term 𝜀𝐵̅𝐺 is the isotropic background value. The background is not predicted by this 

theory; only the deviation from the background is predicted. The high temperature data in Figure 
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2.3b (that is, furthest from the transition) reveals that a background that is linear in temperature is 

sufficient for many samples. However, a higher order temperature dependence may be needed in 

some cases. 

Note that the above theory is developed for just achiral nematic liquid crystals. Second 

order fluctuations about the isotropic and anisotropic components of the generalized order 

parameter 𝜀𝛼𝛽 are included. There are five fluctuation modes accounted for in this derivation. 

2.4 Summary 

With the generalized order parameter, the temperature dependent pretransitional anomalies 

such as those in Figure 2.2 can now be characterized. Although the current derivation does not 

include any term for chirality, it can be applied to chiral results to see where the theory needs 

additional terms to account for chirality. 

Back to the first goal of this dissertation, the result from Equation 2.28 will be used in 

Chapter 4 to fit and compare published data. Good agreement is found. 

The relative dielectric permittivity tensor  𝜀𝛼𝛽  has useful information concerning the 

orientational order parameter. Moreover, both the isotropic and anisotropic parts must be included 

in the free energy expansion in order to properly allow for fluctuations of 𝑄𝛼𝛽 to couple with the 

isotropic part.  

The analysis of the frequency dependence of  𝜀𝛼𝛽  is a well-established framework. For 

isothermal results in which the frequency was swept, this will be used to understand the relaxation 

phenomena of my samples. 
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CHAPTER 3 EXPERIMENTAL SETUP AND METHODS  

This dissertation has two general themes: to apply the generalized nematic order parameter 

to published dielectric data, and to investigate the dielectric behavior of cholesteric phases 

including the emergence of blue phases in the high chirality limit. The dielectric permittivity is 

central to both of these themes. 

First, a discussion is needed on how the dielectric permittivity is measured as a function of 

both frequency and temperature. While frequency control is an embedded function in the Agilent 

4284A LCR meter used in my investigation, the temperature control was a more involved effort 

and will be discussed in detail.  

Second, the data acquisition algorithm will be described. As will be discussed in the first 

part, the dielectric permittivity has both a frequency and a temperature dependence to measure. 

Each of these require different approaches. 

Third, the measurements are of mixtures of two molecules. Each mixture represents a 

different chirality. This serves as a chirality scale. 

Fourth, with dielectric measurements, each phase may give a distinct curve. However, for 

additional verification of what phase a particular dielectric signature represents, optical cross-

polarized microscopy is utilized. 

Lastly, non-linear curve fitting is necessary. The order parameter has been generalized to 

allow for a description of pre-transitional behavior. Also, the frequency response data will be fitted 

according to Cole-Cole’s relaxation model. The results from Chapter 2 need to be expressed in a 

form that is more easily used for testing the model. 
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3.1 Experimental Measurement of the Complex Dielectric Permittivity 

3.1.1 Circuit Model 

In order to easily apply an AC electric field 𝐸𝛽, a material needs to be sandwiched between 

two electrodes. This by definition is a capacitor. The simplest capacitor to construct is a parallel 

plate capacitor in which the field lines of 𝐸𝛽 are uniform. The capacitance of such a capacitor is 

given by the function, 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝜀0𝜀
′ 𝐴

𝑑
,  (3.1a) 

where 𝜀0  is the constant permittivity of free space, 𝜀′  is the relative dielectric permittivity 

characterizing the material, 𝐴 is the area of the portion of the electrode in contact with the sample 

given by 𝐴 = 𝑤ℎ from Figure 3.1a, and the electrode separation 𝑑. 

 

 

(a) Parallel plate capacitor with spacers (b) Circuit model for a parallel plate capacitor with spacers 

Figure 3.1: A parallel plate capacitor of width w, height h, and separation d. 

 

The white objects with horizontal dashed lines are spacers (that is, dielectric materials separating the metal electrodes). The 

area of the spacers need to be accounted for. 

 

 

d 

w 

h 
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When the capacitor is filled, its ability to store energy goes up by a factor 𝜀′ . The 

capacitance of only air is called the open cell capacitance 𝐶0: 

𝐶0 = 𝜀0
𝐴

𝑑
.   (3.1b) 

The impedance of a capacitor is given by, 

𝑍𝐶 =
1

𝑖𝜔𝐶
,   (3.1c) 

where 𝜔 is the applied angular frequency. If the material is not perfectly insulating, then it will 

also have a conductance G (i.e., inverse resistance 𝑍𝐺). Analogous to Equation 3.1a, conductance 

can be related to a material property 𝜎, conductivity, 

𝐺𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝜎
𝐴

𝑑
.   (3.1d) 

As shown in Figure 3.1b, the conductance G is modeled as being in parallel with the 

corresponding capacitance. The capacitor plates are usually separated by a spacer made of an 

insulating or dielectric material such as Teflon. Between the electrodes, the Teflon spacers are also 

modeled as a capacitor in parallel with a conductance G. Figure 3.1b and Equation 3.1c lead to a 

set of equations for the total impedance 𝑍 of the parallel plate capacitor cell for two states: the 

filled cell state, and the unfilled open cell state. The open cell impedance is given by, 

(𝑍𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙)
−1

= 𝐺𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙 + 𝑖𝜔(𝐶𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙),    (3.2a) 

(𝑍𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙)
−1

= 𝐺0 + 𝐺𝑠𝑝𝑎𝑐𝑒𝑟𝑠 + 𝑖𝜔(𝐶0 + 𝐶𝑠𝑝𝑎𝑐𝑒𝑟𝑠).  (3.2b) 

The filled cell impedance can likewise be expressed as, 

(𝑍𝑓𝑖𝑙𝑙𝑒𝑑)
−1

= 𝐺𝑓𝑖𝑙𝑙𝑒𝑑 + 𝑖𝜔(𝐶𝑓𝑖𝑙𝑙𝑒𝑑),     (3.3a) 

(𝑍𝑓𝑖𝑙𝑙𝑒𝑑)
−1

= 𝐺𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐺𝑠𝑝𝑎𝑐𝑒𝑟𝑠 + 𝑖𝜔(𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐶𝑠𝑝𝑎𝑐𝑒𝑟𝑠). (3.3b) 

Subtracting Equation 3.2b from Equation 3.3b eliminates the need to measure and calculate the 

spacers’ conductance and capacitance: 
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(𝑍𝑓𝑖𝑙𝑙𝑒𝑑)
−1

− (𝑍𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙)
−1

= 𝐺𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝐺0 + 𝑖𝜔(𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝐶0). (3.4) 

 

Using Equations 3.1a, 3.1b, 3.2a and 3.3a, the measured values of C and G can be related to the 

desired material values of C and G, 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐶𝑓𝑖𝑙𝑙𝑒𝑑 − 𝐶𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙 − 𝐶0,  (3.5a) 

𝐺𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐺𝑓𝑖𝑙𝑙𝑒𝑑 − 𝐺𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙 − 𝐺0, (3.5b) 

where 𝐶0 and 𝐺0 are the capacitance and conductance of air, respectively. The conductance of the 

air 𝐺0 is zero. Taking into account Equations 3.1a and 3.1b in Equation 3.5a gives, 

𝜀′ =
𝐶𝑓𝑖𝑙𝑙𝑒𝑑−𝐶𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙

𝜀0
𝐴

𝑑

− 1,     (3.6a) 

which is the real part to the relative permittivity discussed in Chapter 2, specifically from Equation 

2.4c. Similarly, taking into account Equations 3.1b, 3.1d, and 3.5b, 

𝜎

𝑖𝜀0𝜔
=

𝐺𝑓𝑖𝑙𝑙𝑒𝑑−𝐺𝑜𝑝𝑒𝑛𝑐𝑒𝑙𝑙

𝜀0
𝐴

𝑑

. (3.6b) 

The term 
𝜎

𝜀0𝜔
 is called the imaginary part of the relative dielectric permittivity, 𝜀′′  (i.e., the 

dielectric loss). Adding Equations 3.6a and 3.6b together gives an equation identical to Equation 

2.4c: 

𝜀(𝜔, 𝑇) = 𝜀′- 𝑖 
𝜎

𝜀0𝜔
.  (3.7) 

This is an expression for the complex dielectric permittivity that can be calculated from any 

measurement performed at a given angular frequency 𝜔 and temperature T.  

3.1.2 Setup, Sample Containment, Frequency, Capacitance, and Conductance 

A parallel plate capacitor was constructed. Figure 3.2 is a schematic of the capacitor and 

sample containment cell setup. The capacitor was submerged into a glass cuvette containing the 
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sample and then placed into an aluminum oven with a temperature control element. Figure 3.3 

shows a photograph of the setup capacitor submerged into the filled cuvette. 

The shape of the capacitor was determined by the available glass cuvettes. Glass was 

chosen over the acrylic cuvettes as they were robust over the temperatures measured and did not 

react with the samples. Also, submerging the capacitor into the liquid sample ensured that the 

space between the plates was completely filled with no leakage. The setup was connected to an 

Agilent 4284A LCR meter in order to apply an AC field 𝐸𝛽 at an angular frequency 𝜔 and to 

measure both capacitance and conductance. Note that the nylon screws pierced the Teflon spacer 

area and the brass electrodes. This allowed for a sturdy assembly. The temperature control will be 

discussed in more detail shortly. 

The LCR meter had the option for the output to be expressed as either impedance with a 

phase shift or capacitance with conductance. Both cases were equivalent and used the model from 

Figure 3.1b in which a capacitor is in parallel with a resistor (called “Parallel Mode” on the meter). 

The capacitance and conductance were chosen as the recorded output. The real and imaginary parts 

of the complex relative permittivity were more intuitively related to the capacitance and 

conductance. Each measurement was time averaged over 990 ms. 
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Figure 3.2: The schematic of my experimental setup and oven. 

 

Two things are not included in this schematic but should be noted: between the peltier thermoelectric and PTFE casing is a thin 

sheet of copper covering all but the top of the setup. Excluding the side with the peltier as well as the top, all sides were further 

insulated to allow for better thermal control. 
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(a) Without Insulation 

 

 

(b) With Insulation 

 

 

Figure 3.3: A photograph of the experimental setup and oven without the capacitor. 

 

The aluminum casing for the cuvette can be seen in the upper left hand corner. It has the resistive heater affixed directly onto it. 

Surrounding that is a PTFE casing. Surrounding that is a copper sheet. In the center of the pictures a black and red wire are seen 

on top connecting to the peltier device. Between the fan on the far right and the peltier device in the middle is a CPU heat sink 

to help draw away heat. In part (b), foam insulation can be seen around the copper plate on the left to help regulate temperature. 
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Xkcd  

 

Figure 3.4: A picture of the capacitor submerged into the cuvette prior to placing into the oven. 

 

The PTFE tape was used to seal the setup so as to protect the sample from the air as well as to provide a flexible cap to prevent 

the sample from leaking out in the event the cuvette was moved relative to the plates. A BNC wire was exposed from the BNC 

cable, embedded into each plate and then soldered in place. 

 

3.1.3 Controlling and Measuring Temperature 

The temperature was controlled by a separate computer and thermistor. The temperature 

was passively recorded by the acquisition computer with a second thermistor. 

A thin copper sheet further enclosed the four side walls and bottom of the setup around the 

PTFE casing referred to in Figures 3.2 and 3.3. Thermal conductivity between the copper sheet 

and casing was enhanced with a layer of Arctic Silver 5 Thermal Compound in between – this 
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compound is commonly used between the heat sink of a CPU (central processing unit) and the 

CPU itself. The heat sink and fan were reclaimed from a defunct motherboard. This setting was 

adapted for thermal regulation here. From Figure 3.3, the top side was left open to allow for wires 

to pass through and was mostly covered for each experiment with insulating foam. The bottom 

side and three sides were covered with insulating foam. The side with the thermoelectric Peltier 

device (opposite to the heater) had the cooling side adhered to the copper sheet with the thermal 

compound. A CPU heat sink fixture was screwed into the PTFE casing and affixed such that the 

hot side of the thermo-electric Peltier device made good mechanical contact with it. A CPU fan 

was attached to the outside of the heat sink to facilitate drawing the heat produced by the Peltier 

away.  

From Figure 3.2, there are two thermistors (B2) inserted into adjacent holes that were bored 

into the aluminum block. One was connected to the MK1 temperature control computer. The 

temperature given by the MK1 system was used as reference. The second thermistor was connected 

to a Keithley 175A multimeter which was connected to the acquisition computer. The temperature 

was measured in units of resistance. The resistance was calibrated prior to each experiment to the 

temperature given by the MK1 temperature control system. 

3.1.4 Recording Frequency, Effective Temperature, Capacitance, and Conductance 

The data were recorded on the acquisition computer using the program LabVIEW. This 

allowed for a partially automated measurement in which the frequency was actively controlled 

while the temperature was passively recorded. The data were recorded in four columns: frequency, 

temperature in units of resistance, capacitance, and conductance. From the Agilent 8284A 

Precision LCR meter, the frequency f, capacitance C, and conductance G were recorded. From the 

Keithley 175A Autoranging Multimeter, the effective temperature was recorded as resistance. This 
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resistance was calibrated to the temperature of the separately controlled MK1 temperature 

controller. The MK1 temperature controlling computer was not controlled by the acquisition 

computer due to technical difficulties. 

3.2 Measurement Procedure 

3.2.1 Capacitor Assembly 

Prior to each measurement, the setup was disassembled, cleaned, and reassembled. The 

thickness of both plates at both the top and bottom portions was measured. When the plates and 

spacers were assembled and fixed into place by the nylon screws, the thicknesses of both the top 

and bottom portions were again measured. This thickness minus the thickness of the individual 

plates gave the spacing. Prior to reassembly, the PTFE spacers were measured to be just under 

0.39 mm with calipers. The screws were adjusted so that this spacing was as close to 0.38 mm as 

possible to ensure the setup was in good mechanical contact. The results of these measurements 

averaged over every experiment are seen in Table 3.1. 

Table 3.1: The dimensions of the capacitor. 

 

Prior to each material studied, the capacitor was taken apart, cleaned, and reassembled. Due to this method, it was determined 

that re-measuring the setup each time would serve as a diagnostic tool in the event problems were encountered. With that said, 

there were two calibrations. After July 2013, one of the spacers was lost and needed to be replaced. 

(a) Pre July 2013 setup measurements    

       Total Area 𝐴𝑡𝑜𝑡𝑎𝑙 (𝑚𝑚
2) 379.7 ± 0.2  

 Spacer Area𝐴𝑠𝑝𝑎𝑐𝑒𝑟𝑠 (𝑚𝑚
2) 108.4 ± 0.6  

     Open Cell Area 𝐴0 (𝑚𝑚2) 271.3 ± 0.7  

           Plate Spacing 𝑑 (𝑚𝑚) 0.375 ± 0.004  

    

(b) Post July 2013 setup measurements    

       Total Area 𝐴𝑡𝑜𝑡𝑎𝑙 (𝑚𝑚
2) 379.7 ± 0.2  

 Spacer Area 𝐴𝑠𝑝𝑎𝑐𝑒𝑟𝑠 (𝑚𝑚
2) 103.0 ± 0.2  

     Open Cell Area 𝐴0 (𝑚𝑚2) 276.7 ± 0.3  

           Plate Spacing 𝑑 (𝑚𝑚) 0.383 ± 0.008  
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3.2.2 Scenario 1: Constant Temperature, Sweep Frequency 

The experiment involved two scenarios. The first scenario was to obtain the frequency 

dependence. The frequency was swept from 20 Hz to 1 MHz while the temperature was held 

constant. Each frequency sweep took about 36 minutes. Each frequency was sampled for 30 

seconds at one second intervals. The hard disk drive used had a 0.2 second delay in recording each 

measurement (that is, the LabVIEW program was setup to write every measurement to the file as 

opposed to memory; this served as a precaution toward power failures, but inherently slowed down 

the acquisition computer. This lag was measured to be 0.2 seconds per write). The measured 

capacitance and conductance were time averaged. Upon changing the frequency, the system was 

programmed to allow for a 10-second pause prior to recording the next frequency; this allowed 

sufficient time to avoid transient effects due to switching. The setup had a five decade recording 

capability. From preliminary tests, ten frequencies per decade appeared to be a reasonable 

resolution data; the capacitance and conductance were measured for 47 frequencies. The frequency 

sweeps would terminate automatically. 

The temperature had to be manually changed to the next temperature. To ensure the 

experiment was working properly, the acquisition computer displayed the acquired data in real-

time as a function of time. Prior to beginning the subsequent frequency sweep, I waited for the 

temperature, capacitance, and conductance to be constant as a function of time at 10 kHz.  

3.2.3 Scenario 2: Ramp Temperature, Constant Frequency 

For the second scenario, the frequency was held constant. The temperature was cycled at 

0.2 °C/min from around 15 °C below the expected mesophase-isotropic transition and to around 

25 °C into the isotropic phase. At both the lowest and highest temperatures measured, the 

temperature was held constant for about 50 to 60 minutes. A typical heating and cooling cycle took 
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eight hours. At least three temperature cycles were recorded per frequency. At a given frequency, 

the system would continue cycling until stopped manually. 

To ensure the experiment was going well, the acquisition computer displayed the acquired 

data in real-time. At the upper and lower temperatures, the capacitance and conductance were 

monitored to ensure they were constant over the hour mentioned in the previous paragraph. During 

this time, the frequency was manually changed when testing the thermal response at a low and 

high frequency. 

3.2.4 The Open-Cell Measurement 

Prior to each sample measurement, the parallel plate capacitor setup was disassembled and 

cleaned. After reassembling, the physical dimensions of the setup were re-measured. Scenario 2 

was then performed at 10 kHz (the desired frequency for the samples) to test repeatability over 

multiple temperature cycles between 25 °C and 100 °C. 

Scenario 1, the frequency response of the setup, was then measured and recorded over six 

discrete temperatures ranging between 30 °C and 80 °C, the planned measurement range for the 

samples. The open-cell capacitance 𝐶𝑜𝑝𝑐  and conductance 𝐺𝑜𝑝𝑐  were recorded as functions of 

temperature and frequency. The temperature dependences of 𝐶𝑜𝑝𝑐 and 𝐺𝑜𝑝𝑐were fitted to a third 

order polynomial per frequency so as to compare to the filled cell temperature sweep data.  

3.2.5 The Filled-Cell Measurement 

After sufficiently characterizing the open cell, the capacitor was dipped into a cuvette of 

the liquid crystal sample. This was done slowly to allow air bubbles to diffuse out. The cuvette 

and capacitor together were sealed by PTFE tape. Scenario 2 was then carried out both to ensure 

that the system was working (i.e., continuous change from one temperature to the next, constant 
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capacitance and conductance at constant temperature) and to obtain an initial estimate of the 

mesophase-to-isotropic phase transition. 

Scenario 1 was then carried out. Based on the initial high temperature phase transition, the 

discrete temperatures were chosen such that at least two were in the isotropic phase, at least four 

were below and near the isotropic transition, and at least one was near the lowest temperature to 

be measured. 

Scenario 2 was then carried out again. Two frequencies were chosen: 10 kHz and 100 kHz. 

The temperature was cycled for three to four times for each frequency. At minimum, multiple 

cycles served as a test of system repeatability. 

3.3 Chirality Scale and Samples 

The blue phases, which are isotropic, appear in the high chirality limit. An easy way to 

vary the chirality is to prepare various mixtures of two compounds that are of opposite chirality. 

Two molecules were chosen because of their previous use in light scattering experiments: 

cholesteryl oleyl carbonate (COC, left handed) and cholesteryl chloride (CC, right handed). The 

chemical structure of each of these can be seen in Figures 1.4a and 1.4b. Cholesteryl chloride has 

a strong longitudinal dipole, while COC does not. Cholesteryl oleyl carbonate has the advantage 

that it is highly chiral and easy to handle near room temperature with a blue phase III to isotropic 

phase transition around 39 °C.  

Both cholesteryl chloride and cholesteryl oleyl carbonate have monotropic phase 

transitions. This means that the phase sequences are different on heating versus cooling. 

Cholesteryl chloride goes from crystal to isotropic on heating. However, on cooling it goes from 

isotropic to blue phases I and II followed by cholesteric on cooling. Cholesteryl oleyl carbonate 

transitions from smectic A to cholesteric to isotropic on heating. On cooling from the isotropic 
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phase, COC transitions to blue phases III, II, and I followed by cholesteric then smectic A at the 

lowest temperatures. 

The cholesteryl oleyl carbonate rich mixtures were more stable than the cholesteryl 

chloride rich mixtures. From cross-polarized microscopy observations, the cholesteryl oleyl 

carbonate rich mixtures did not spontaneously crystallize between their isotropic-mesophase 

transitions and room temperature. Observed with cross-polarized microscopy, cholesteryl chloride 

is a crystal from room temperature through 98 °C. After melting, the sample is cooled. On cooling, 

cholesteryl chloride stays an isotropic liquid down to 71.5 °C. At 71.5 °C a green, speckled blue 

phase appears and persists down to 70.3 °C. The N* phase forms below that. On further cooling, 

the N* phase persists until 60 °C. Between 60 °C and 55 °C, N* can exist. However, if the 

temperature is held too long (anywhere between a few minutes and a couple of hours), the sample 

spontaneously crystallizes. Once this happens, it has to be heated back up to 98 °C. The heating 

and cooling cycles are repeatable for cross-polarized microscopy observations. 

For dielectric measurements, the heating and cooling cycles at constant frequency were not 

repeatable for cholesteryl chloride. With an applied field, heating and cooling from a crystal to 

isotropic apparently placed too much stress on cholesteryl chloride. It eventually broke down 

chemically after one to two cycles. This resulted in a sticky, viscous, brown goo forming, beyond 

which the sample was destroyed. The cholesteryl chloride rich mixtures (above 70% cholesteryl 

chloride) followed this same pattern of breaking down after one or two heating and cooling cycles. 

Since the blue phases are of primary interest, it is reasonable to focus on the mixtures that 

are of high enough chirality to exhibit a blue phase. For these mixtures, the BPs are not seen above 

35% cholesteryl chloride. Out of curiosity, up through 60% cholesteryl chloride was successfully 

measured. Beyond that, the above mentioned problem occurred. 
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As mentioned in Table 3.1, two different permittivity conversion calibrations were used. 

The pre-July 2013 measurements were for the following percent mixtures of cholesteryl chloride 

with cholesteryl oleyl carbonate: 0%, 3%, 6%, 12%, 20%, 30%, and 40%. The post-August 2013 

measurements were a premeasurement of the 0% mixture for comparison followed by 1.5%, 16%, 

25%, 35%, 45%, 50%, 55%, and 60%. 

3.4 Data Processing, Curve Fitting, Analysis 

3.4.1 Own Data 

The data acquired, mentioned in Section 3.2, were imported into MATLAB. An in-house 

script was developed to convert the raw data into relevant quantities: resistance of thermistor to 

temperature, capacitance to the real part of the relative dielectric permittivity, and conductance to 

the imaginary part of the relative dielectric permittivity. The results were then plotted and saved 

in various formats for further analysis. Excel and OriginLab were then used for collating the 

resulting plots. 

The frequency dependent data were exported into Mathematica for non-linear curve fitting. 

The Havriliak-Negami and Cole-Cole equations (Equations 2.9, 2.11, and 2.13) were used for 

modeling the data. The equation for fitting was expressed as, 

𝜀 = 𝜀∞ +
∆𝜒0

(1+(𝑖
𝜔

2𝜋𝑓𝑟
)
𝛼
)
𝛽 + 𝑖 

𝑆

𝜔𝑁,  (3.8) 

where 𝜀∞ is the high frequency permittivity, ∆𝜒0 is the real-axis width of the dispersion arc, 𝑓𝑟 is 

the linear relaxation frequency, 𝛼 is the shift in the dielectric loss, 𝛽 is the amount of linearity in 

the high frequency data, S is an effective DC conductivity, and N is a fitting parameter for 

quantifying low frequency contributions to the dispersion. For the results shown in Chapter 5, 

parameter 𝛽 was fixed at a value of one due to limited high frequency data. 
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Excel, Mathematica, and Origin are used extensively for the remainder of the temperature 

dependent analysis. 

3.4.2 General Nematic Order Parameter: Data from Other Groups 

Low frequency, dielectric data were acquired in two ways: directly from the author as is 

the case for the Leuven group 28, 37, and from the published plots in papers as is the case for the 

Warsaw group 38-46. All of these data were for the temperature dependence at constant frequency 

for liquid crystals. Of the 22 data sets looked at, 15 were samples that have a nematic-isotropic 

phase transition. Six of the data sets have a smectic-isotropic phase transition. One data set has a 

chiral nematic to isotropic phase transition. 

For the Warsaw group 38-46, the data were extracted from figures in published papers using 

a program called WinDig. The graphs were saved as picture files and loaded into WinDig. Using 

the graph axes as reference, WinDig allows for a calibration to be used in order to extract and save 

numerical information. 

Both groups obtained data for the nCB homologue series, where n is length of the carbon 

chain attached to the rigid cyano-biphenyl (CB) group. This allows for a comparison of the 

resultant fitting parameters as a function of both carbon chain length n and frequency as the Rzoska 

group obtained their data at a different frequency from that of Thoen et al. Rzoska et. al. also 

obtained data for various other compounds such as the nOCB series (6, 7, and 8OCB). The nOCB 

homologue series is like nCB except that an oxygen atom separates the carbon chain from the CB 

core. This provides another useful comparison. 

All of the above mentioned data exhibit pretransitional curvature in the isotropic phase as 

the lower temperature mesophase is approached. The aim of Equation 2.28 is to be a model that 

adequately describes this pretransitional dielectric behavior. The need for this is motivated by 
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Figure 2.2. While it is possible to apply this general approach to the nematic side of the transition, 

it is desired to first test the validity of Equation 2.28 in the isotropic phase. 

TableCurve was used for initial curve fitting. The results were then repeated in MATLAB 

and Mathematica. Each program has advantages. The goodness of fits is assessed by χ2 versus each 

fitting parameter per program. The standard error (i.e., the uncertainty in each fitting parameter 

calculated from the non-linear least squares routine using the best fit χ2 parameter) is useful 

obtaining error bars on the fitting parameters. However, its calculation is a bit trickier since the 

data do not have included error bars. The uncertainty in each data point is estimated by both the 

least significant figure in the data as well as the spread over an entire data set. The spread in a 

given data set will be discussed in Chapter 4. 

The non-linear fitting routines use chi-square as a way of estimating the parameter values 

as well as calculating the standard errors. In particular, the programs are setup to use the 

Levenburg-Marquardt method. Chi-square is defined as, 

𝜒2 = ∑ (
𝜀̅−𝑦𝑖

𝜎𝑖
)
2

𝑁
𝑖 .  (3.9) 

The fitting function is represented by 𝜀.̅ The ith data points are represented by yi. The index N 

represents the number of data points, and 𝜎𝑖 is the estimated uncertainty per data point. For five 

fitting parameters A, B, C, D, and E, the estimated values are obtained by minimizing 𝜒2, which 

results in a system of equations. 

In addition to 𝜒2, it is informative to know what the standard errors are. Mathematica 

computes the estimated standard errors using the correlation matrix. For five parameters, this 

would be a five-by-five matrix in which the square root of the diagonal elements return the standard 

errors. 
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For each fit, a method called range shrinking will be used. This involves deleting m data 

points in order from the highest temperature data and seeing how that changes the fit, including 

𝜒2 and the estimated standard errors. In order to compare each fit of different number of data 

points, 𝜒2 must be normalized by the number of degrees of freedom of the fit 𝜈:  

𝜈 = 𝑁 −𝑚 − 𝑘.   (3.10) 

The integer N is the number of data points, m the number of data points subtracted, and k the 

number of fitting parameters. This normalized quantity is the reduced chi-square, 

𝜒𝜈
2 =

𝜒2

𝜈
.  (3.11) 

3.5 Summary 

The setup and procedure have been discussed in detail as well as how to measure the 

complex dielectric permittivity. The dielectric permittivity is key to both themes of this dissertation. 

The first theme is to test the generalized order parameter, Equation 2.28, on published data. The 

second theme is to experimentally investigate the dielectric behavior of cholesteric phases as 

chirality is varied. The second theme also will look at emergence of blue phases between the 

cholesteric and isotropic phases in the high chirality limit. 

Non-linear curve fitting is necessary for both the frequency response equations as well as 

for the generalized nematic fluctuation equation. The fitting parameters will be compared. 

Moreover, the equation from the general nematic order parameter may be applied to chiral data. 

Strictly speaking, Equation 2.28 is applicable in the zero-chirality. It would be interesting to see at 

what point it breaks down for higher chirality. 
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CHAPTER 4 THE GENERALIZED NEMATIC ORDER PARAMETER APPLIED  

In Chapter 2, the theory for a more general nematic order parameter was discussed. This 

was needed in order to describe the anomalous dielectric curvature seen near the isotropic to 

nematic phase transition. The resultant model of this theory, Equation 2.28, will now be applied to 

dielectric data obtained from other research groups 28, 37-46. The model’s ability to analytically 

describe the relevant data is studied. 

The goal of this chapter is to find a robust fitting approach that applies to the available data 

sets 28, 37-46. A typical sample (6CB from Thoen et. al. 28, 37) will be used as a framework to discuss 

the results of various fitting approaches. The data for the typical sample are shown in Figure 4.1. 

Mentioned in Figure 4.1, for this chapter, a subscript index m will be used on fitting parameters 

when the full function is used. A subscript index μ will be used when an expansion is taken. A 

subscript index N will be used to refer to the entire temperature range of data available. 

Sections 4.1 and 4.2 of this chapter are prologue for this chapter. Section 4.1 will begin 

with a recap of the equation of this theory. Equation 2.28 will be expressed in a way that is 

amenable to curve fitting. Fitting difficulties in the form of absurd results were experienced in the 

fitting of the full function. The initial approaches to overcome these difficulties and results of 

fitting the theory to example data are presented. 

Section 4.2 attempts to understand the relationships among the fitting parameters by taking 

a series expansion of this theory. Three possible expansions are found to be reasonable for 

consideration with each having four parameters of identical definition. All three expansions are 

fitted to example data with their parameter estimates compared and shown. 

Section 4.3 is the heart of this chapter. Using the relationships found from the series 

expansion, the full function is transformed into a hierarchical model that uses the form of the full 
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function, Equation 2.28. The hierarchical model accounts for the parameter estimates as well as 

the relationships found from a series expansion. 

Using the robust hierarchical model, Section 4.4 will end this chapter with the best 

parameter results for all samples investigated. These include those examined by the Leuven group 

who systematically obtained dielectric measurements for the nCB series under similar conditions 

at 1 kHz 28, 37. The carbon chain length n ranged from five to twelve. The Warsaw group has a 

diverse selection of samples measured under various conditions and frequencies 38-46. 
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Figure 4.1: Isotropic data for a typical sample. The data set is of 6CB from the Leuven group, which represents two thirds of the 

data sets studied 28, 37. 

 

The use of the indices m and μ are to distinguish between the two types of fits performed in this chapter: 

 Black Horizontal Arrows: N: The total number of data points for a given sample. 

 Blue Horizontal Arrows: m: The initial approach to analyzing the model (Equation 2.28) was to truncate the higher 

temperature side of the data. This is referred to as range shrinking. The number of data points leftover is m. 

 Red Horizontal Arrows: μ: A series expansion is taken of the model discussed. Since a series expansion may not 

necessarily describe the entire range of temperature data, the higher temperature side of the data may need to be 

truncated or range-shrunk. The number of data points leftover is μ. 

Additionally, as will be evident in this chapter, typical is with respect to the reduced chi-square 𝜒𝜈
2 vs 𝐷 plots. Two-thirds of the 

data sets had a double minimum; one-third had a single minimum.  
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4.1 The Model and Results: Full Function 

Prior to delving into finding a solution to the difficulties encountered in the fitting process, 

some background is needed. This section will first focus on only the full function. The section will 

then end with a discussion of the initial attempts to resolve apparently absurd results. These results 

will show a few of the difficulties encountered. However, the results will also show that there is 

an underlying pattern to these difficulties. Section 4.2 discusses the underlying patterns. Table 4.1 

at the end of Section 4.1 shows the numerical fitting results for selected fits. 

The model is given by Equation 2.28: 

𝜀̅ = 𝜀𝐵̅𝐺 − ℎ𝜇
5𝑘𝑏𝑞𝑚𝑎𝑥

2𝜋2𝐿
𝑇 [1 − (𝑞𝑚𝑎𝑥𝜉0√

𝑇∗

𝑇−𝑇∗
)

−1

𝑎𝑟𝑐𝑡𝑎𝑛 (𝑞𝑚𝑎𝑥𝜉0√
𝑇∗

𝑇−𝑇∗
)]. 

Equation 2.28 describes the pretransitional curvature that appears on the isotropic side of the 

nematic-isotropic phase transition. Typical data are seen in Figure 4.1. As mentioned in Chapter 

2, the model is composed of two parts: the background 𝜀𝐵̅𝐺 and the pretransitional curvature ∆𝜀.̅ 

4.1.1 The Fitting Parameters 

In order to simplify the discussion Equation 2.28 is written in a more compact form. The 

first step is to define the reduced temperature 𝑥: 

𝑥 =
𝑇−𝑇∗

𝑇∗
.  (4.1a) 

The reduced temperature is a dimensionless quantity that conveniently shows the relative 

temperature dependence with respect to the critical temperature 𝑇∗. The critical temperature 𝑇∗ is 

the theoretical absolute temperature where the correlation length 𝜉 would diverge in the absence 

of a phase transition. A typical data set has a reduced temperature range ∆𝑥 of around 0.30. In 

Figure 4.1, this corresponds to an absolute temperature range of about 60 K. 
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It has been reported for the n-cyano-biphenyl series (referred to as nCB in this chapter) that 

𝑇∗ is expected to be no more than 2 K below the isotropic to nematic phase clearing temperature 

 𝑇𝐶 48. The clearing temperature is the temperature at which the phase transition happens. The value 

of  𝑇𝐶 is approximated by the lowest temperature data point in the isotropic phase which in this 

dissertation will be called 𝑇𝐼𝑀. The subscript IM stands for isotropic-mesogenic, since more than 

one isotropic to mesogenic phase transition is discussed in this dissertation.  

4.1.1.1 Fitting Parameters: The Background 

The background 𝜀𝐵̅𝐺 in the isotropic phase is not predicted by this generalized theory. The 

functional form of 𝜀𝐵̅𝐺 needs to be estimated. By inspection of typical data seen in Figure 4.1, the 

highest temperature range of data (between 335 K to 360 K) can be fitted with a low order 

polynomial of order no more than two: 

𝜀𝑖̅𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑓𝐵𝐺𝑥
2 − 𝐴𝑥 + 𝐵.  (4.1b) 

The way chosen to justify either the exclusion or inclusion of 𝑓𝐵𝐺  is to fit the highest data 

points. For typical data seen in Figure 4.1, the highest temperature range of data (325 K to 360 

K) are used to estimate the functional form of the background. Figure 4.2 shows the fitting 

parameter results for the cases of 𝑓𝐵𝐺 = 0  and 𝑓𝐵𝐺  as a free parameter for typical data. For 

completeness, the background ranges that were fit were from four to sixty-four data points. The 

total number of data points were 64. The value of four is the lowest number of data points allowed 

by least-squares regression for a three-parameter (quadratic polynomial) model in order to 

estimate the standard errors as well as other regression statistics.  

In Figure 4.2, the abscissa is the number of data points used that counted from the highest 

temperature data point (see Figure 4.1 for reference). The quadratic coefficient in Figure 4.2a 

does not become constant over any range of background. The slope and intercept terms (Figure 
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4.2, parts (b) and (c), respectively) vary significantly more for the quadratic fit than for the linear 

fit. By inspection of Figure 4.1, a linear fit to the background ranges (that is, up to a range of 30 

K) is reasonable. Figure 4.2, parts (b) and (c) confirm that the linear fit is indeed relatively 

constant for the 20 highest temperature data points (that is, up to a 30 K temperature range). 

For typical data, the inclusion of 𝑓𝐵𝐺𝑥
2 in fitting the highest temperature data points (see 

Figure 4.2) does not show any range for which the quadratic fits parameters become constant 

over any range of data points (that is, temperature ranges). The inclusion of 𝑓𝐵𝐺𝑥
2 in the fitting 

process gives an extra degree of freedom that leads to further complications. For this dissertation, 

𝜀𝐵̅𝐺 is modeled as a two parameter linear function of reduced temperature 𝑥: 

𝜀𝐵̅𝐺 = −𝐴𝑥 + 𝐵.  (4.1c) 

The slope is expressed with a negative sign as all data sets fitted at the high temperature side have 

negative slopes. Parameter 𝐵  is the value of the background permittivity at the critical 

temperature 𝑇∗ (that is, when the reduced temperature 𝑥 is zero). 
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(a) Quadratic coefficient 𝑓
𝐵𝐺

 

 

 

(b) Slope coefficient 𝐴 . A flat line is 

desireable. 

 

 

(c) Intercept 𝐵 

  

 

 

 

Figure 4.2: Estimating the background of 6CB from Thoen et. al. 
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4.1.1.2 Fitting Parameters: The Pretransitional Curvature 

The pretransitional curvature can be defined with respect to two fitting parameters: 𝐶 and 

𝐷. The magnitude of the pretransitional curvature comprises multiple coefficients from the free 

energy expansion in Chapter 2. These will be made into a single fitting parameter: 

𝐶 = ℎ𝜇
5𝑘𝑏𝑞𝑚𝑎𝑥

2𝜋2𝐿
𝑇∗.  (4.1d) 

Recall that in Equation 2.21 the coefficient ℎ is defined to be a positive quantity for downward 

curvature. Likewise, 𝐶 is positive for downward curvature as the other parameters in Equation 

4.1d are always positive. All fitted data studied in this dissertation have a downward pretransitional 

curvature. 

Since the cutoff wave vector 𝑞𝑚𝑎𝑥 and the bare correlation length 𝜉0 appear as a products 

in Equation 2.28, the product is made into a single, dimensionless fitting parameter D:  

𝐷 = 𝑞𝑚𝑎𝑥𝜉0.  (4.1e) 

Both the cutoff wavelength 𝑞𝑚𝑎𝑥  and the bare correlation length 𝜉0  are inherently positive 

quantities. The estimate of 𝐷 is reported in the literature to be between 0.25 and 1 48. The Debye 

estimate of 𝐷, found by looking at a Wigner-Seitz cell in reciprocal space, is near a value of five. 

The resultant fitting equation is, in terms of the reduced temperature 𝑥,  

𝜀𝑓̅𝑢𝑙𝑙 = −𝐴x + 𝐵 − 𝐶(1 + 𝑥) [1 −  
√𝑥

𝐷
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐷

√𝑥
)].  (4.2) 

Equation 4.2 will be referred to as 𝜀𝑓̅𝑢𝑙𝑙, the full function or the full model. The full function is a 

five parameter model: 𝐴 , 𝐵 ,  𝐶 ,  𝐷 , and  𝑇∗.  Section 4.2 will show how these parameters are 

interrelated. 
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(a) All parameters 𝐴,𝐵, 𝐶,𝐷, and 𝑇∗ free. The initial 𝐷 is set to less than or equal to 1. 𝛘𝛖,𝐦
𝟐 = 𝟏𝟖. 𝟔 

 

 

(b) All parameters 𝐴, 𝐵, 𝐶, 𝐷, and 𝑇∗ free. The initial D is set to greater than 1. 𝛘𝛖,𝐦
𝟐 = 𝟏𝟕. 𝟗 

 

 

Figure 4.3: Fitting of the full function to typical data. The 6CB data from Thoen et. al. are used 37. 

 

The only conditions separating the fit results of part (a) from part (b) are the initial conditions for the fitting parameters. The 

fitting routine was especially sensitive to whether the initial value of D were less than or greater than 1. For parts (a) and (b), 

the function fits the data well. The standard errors for the parameters in both cases are less than 1%. 

Using only the reduced chi-square χυ,m
2  as a test of the goodness of fit would select part (b) as the better fit. However, part (b) 

has the most absurd values for the magnitudes.  
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4.1.2 Fitting Approaches and Results 

Figure 4.3 reveals two problems in fitting the full function 𝜀𝑓̅𝑢𝑙𝑙 . First, for typical data 

(about two-thirds of the data sets analyzed), two sets of results are obtained depending on the initial 

conditions. In Figure 4.3a, when the initial conditions corresponding to a 𝐷 that is less than one, 

reasonable results with reasonable fitting error estimates are obtained. In Figure 4.3b, when the 

initial condition for 𝐷  is greater than one, the fitting routine seems to run amok, reporting 

unphysical estimates with relatively small percent standard errors. Secondly, the fit results in 

Figure 4.3b have the lower reduced chi-square 𝜒𝜐,𝑚
2 . The other third of the data sets analyzed had 

a problem with the value of 𝐷 always going to a value of one along with parameters 𝐵, 𝐶, and 𝐷 

having large infinite standard errors. The following three approaches reveals insight into these 

problems. 

First, seen in Figure 4.3, all parameters are allowed to be free and the initial conditions are 

explored. For clarity, an index m will be used on 𝑇∗ (or any other parameter such as 𝜒𝜐
2, 𝐴, 𝐵, 𝐶, 

or 𝐷) to emphasize that 𝑇𝑚
∗  is an estimate of 𝑇∗ using 𝜀𝑓̅𝑢𝑙𝑙. 

Second, parameters 𝐷  and 𝑇∗  are held constant at discrete values, since 𝜀𝑓̅𝑢𝑙𝑙  has a 

nonlinear dependence on these two parameters. The same approach of fixing 𝑇∗ to a literature 

value will be used in Section 4.2. The paper by Zink et. Al. Report the literature value only for the 

nCB series. For clarity, this fixed 𝑇∗ will be referred as 𝑇𝑍𝑖𝑛𝑘
∗ . 

Third, a technique called range shrinking is used. Index m also refers to 𝑇𝑚
∗  (and the other 

fitting parameters) being allowed to estimate of 𝑇∗ on range shrinking. 

4.1.2.1 Approach 1: All Parameters Free 

The model was first fit to the data such that all five parameters were free. Figure 4.3 shows 

that the model fits the data well. However, also seen in Figure 4.3 is that the parameter estimates 
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are ambiguous for typical data. The fitting results in applying Equation 4.2 to the 6CB data were 

dependent on the initial conditions. 

4.1.2.2 Approach 2: Holding Parameters D and T* Constant 

The full model 𝜀𝑓̅𝑢𝑙𝑙 is linear in parameters 𝐴, 𝐵, and 𝐶. However 𝜀𝑓̅𝑢𝑙𝑙 has a complicated 

dependence on both parameters 𝐷 and 𝑇∗. It was hoped that manually varying 𝐷 and or fixing 𝑇∗ 

to a literature value may reveal the underlying issue that leads to the ambiguous results shown in 

Figure 4.3. Note that, in Figures 4.4b and 4.4c, the standard errors are reasonable when 𝐷 is fixed. 

The first part of this approach is to manually vary parameter 𝐷  at discrete values in 

Equation 4.2 while the remaining parameters are free in the fitting process. The resultant lowest 

reduced chi-square plot 𝜒𝜐
2 versus 𝐷 reveals two general categories among the 22 data-sets fitted: 

𝐷 = 1 is a minimum and 𝐷 = 1 is a maximum. About one-third of the fitted data sets had a 

minimum at 𝐷 equal to one. In this case, the reported standard errors for parameters 𝐵, 𝐶, and 𝐷 

were unphysical. Unphysical here refers to the standard errors being well above double the 

parameter estimates. The remaining two-thirds of the data sets had a maximum 𝜒𝜐
2 at 𝐷 equal to 

one with local minima on either side. The typical data set used, n-6-n-cyano-biphenyl (shown in 

Figure 4.1), falls into the second category. Figure 4.4a shows the lowest 𝜒𝜐
2 as parameter D is 

manually varied. In 𝜒𝜐
2-space, a maximum lies at 𝐷 = 1 for typical data. 

The second part of this approach is again to manually vary 𝐷 with the addition of fixing 

parameter T* to a literature reported value 48. Fixing parameter T* has the same two general 

categories mentioned in the plot of 𝜒𝜐
2 versus 𝐷. However, in this case, a little over half of the 

cases have a minimum at 𝐷 = 1. A little under half of the data sets have a maximum 𝜒𝜐
2 at 𝐷 = 1 

with minima on either side. The typical data set used, 6CB, falls into the second category again, 

where 𝐷 = 1 is a maximum.  
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 D fixed and T* free D and T* both fixed 

(a) Goodness of fit as the reduced 𝜒𝜈
2 versus parameter D. 

 

 

 

 

 

 

(b) A fit with the initial condition D < 1 

 

 

 

 

 

 
(c) A fit with the initial condition D>1 

 

 

 

 

 

 

Figure 4.4: A fit of Equation 4.2 to typical data with D manually varied. 

 

Parts (b) and (c) correspond to the two minima seen in part (a). 

 

Figure 4.4 shows the results of fitting the full function with parameter D manually varied. 

Part (a) reveals that for typical data the plot of 𝜒𝜐
2 versus 𝐷 has a peak at 𝐷 = 1. Figure 4.4b is a 

plot of the minimum at 𝐷 < 1. Figure 4.4c shows the case of 𝐷 as 𝐴 → 0 (that is, as 𝐷 increases). 

It is clear that, while the function fits the data quite well, the parameter estimates are ambiguous. 



www.manaraa.com

61 

 

 

As D increases above 1, the background slope A decreases until it changes sign. For all samples 

studied, when D is manually varied, zero slope is reached near 𝐷 =  5, the Debye value. This 

corresponds to a constant background 𝜀𝐵̅𝐺 = 𝐵. However, a value of 𝐷 near the Debye value did 

not result in a lowest 𝜒𝜐
2 fit. Table 4.1b at the end of Section 4.1 shows the results of fitting the full 

function to typical data with parameter 𝐷 manually varied. 

4.1.2.3 Approach 3: Range Shrinking 

In the study of phase transitions, range shrinking is a method used to test a model’s 

temperature range of applicability ∆𝑇𝑚  (or a corresponding reduced temperature range  ∆𝑥𝑚 ). 

Figure 4.1 is a plot of typical data. The total number of data points is 𝑁 . Range shrinking 

sequentially removes 𝑁 −𝑚 data points from the highest temperature side of the plot. No data are 

range shrunk on the lowest temperature side of the plot. The number of data points 𝑚 that remain 

are used in fitting the data over the corresponding ∆𝑇𝑚. The index 𝑚 is counted from the phase 

transition clearing temperature (that is the lowest temperature data point 𝑇𝐼𝑀 in the isotropic phase). 

In this chapter, index 𝑚 identifies range shrinking when the full function 𝜀𝑓̅𝑢𝑙𝑙 is fit to data. 

Caution must be taken when removing data from the fitting process and then reporting the 

results. In order to assess the choice of temperature range ∆𝑇𝑚 to report, two metrics are used: the 

reduced chi-square 𝜒𝜐
2  plotted against ∆𝑇𝑚 , and the single deletion variance test which is the 

normalized variance of a fit plotted versus the absolute temperature. If range shrinking is an 

applicable tool then the corresponding fitting parameters should stay constant irrespective of the 

temperature range beyond a certain shrinkage of data. 

4.1.2.4 Range Shrinking Using χ 2
υ 

The reduced-chi square 𝜒𝜐
2 versus ∆𝑇𝑚 is the first metric used with each temperature range 

∆𝑇𝑚 . The resultant goodness of fit 𝜒𝜐
2 is seen in Figure 4.5a for each range ∆𝑇𝑚 . Each range 



www.manaraa.com

62 

 

 

corresponds to the removal of 𝑁 −𝑚 data points. Chapter 3 introduced the reduced chi-square 𝜒𝜐
2 

as the chi-square 𝜒2 divided by the number of degrees of freedom 𝜐 (see Equations 3.10 and 3.11). 

When either the number of data points or model parameters are varied, the number of degrees of 

freedom change. In order to directly compare the goodness of various fits with different degrees 

of freedom 𝑑 , normalization is required. The number of degrees of freedom serves as a 

normalization factor of 𝜒2for data sets with different 𝜐.  

Figure 4.5a shows the results of ranging shrinking using Equation 4.2 to fit the typical data. 

The 𝜒𝜐
2 significantly drops over the removal of the highest 10 K of data (the furthest four data 

points on the right). While the model fits the data well over all temperature ranges, a steep drop in 

𝜒𝜐
2 indicates that the parameter estimates are not very stable when the highest 10 K of data are 

included. After dropping the highest four data points, the 𝜒𝜐
2 roughly levels out versus ∆𝑇𝑚. This 

indicates that the parameter estimates upon further range shrinking may be more stable after 

removing the aforementioned data points. 

The removal of just four data points, in the case of 6CB, results in the ambiguous double 

minimum with reasonable standard errors from Figure 4.4a, turning into a single minimum 𝜒𝜐
2 fit 

corresponding to 𝐷 = 1 with large standard errors. The plot of parameter 𝐷 versus ∆𝑇𝑚 is seen in 

Figure 4.5b (for the cases of two minima, only one is shown for all parameter plots). Comparing 

Figure 4.4a to Figure 4.5c shows this change in number of minima. 

Figure 4.5 shows the remainder of the fitting parameters 𝐴, 𝐵, 𝐶, and 𝑇∗, each plotted 

versus ∆𝑇𝑚. For each parameter, the results are smoother for the case of 𝑚 < 𝑁 − 4 and vary 

much less than the case of 𝑚 going to 𝑁. It is seen that 𝜒𝜐
2 is a good metric for justifying the 

removal of a few high temperature data points. 
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Typical data (two-thirds of all data sets studied), in 𝜒𝜐
2  space, the parameter set 

corresponding to 𝐷 = 1 always shows up as a local maximum (see Figure 4.3a as an example). 

The two minima are centered around 𝐷 = 1. Upon sufficient range shrinking ∆𝑇𝑚, a single 𝜒𝜐
2 

minimum emerges corresponding to a parameter set with 𝐷 = 1 with large standard errors. Chosen 

typical fits based on using 𝜒𝜐
2 can be viewed numerically in Table 4.1 at the end of Section 4.1. 

The other third of data sets return a single minimum 𝜒𝜐
2 set of parameters corresponding to 

𝐷 = 1 with large standard errors. In these cases, either range shrinking has no effect or the opposite 

scenario happens to that of the typical data. That is, a double minimum emerges in 𝜒𝜐
2  space 

centered around a maximum 𝜒𝜐
2 at 𝐷 = 1 upon sufficient range shrinking. However, when 𝐷 is 

allowed to be a free parameter with range shrinking, it returns unphysical standard errors. 

Note that the critical temperature 𝑇∗ was held constant at a literature value to see if it would 

resolve various problems seen. This is seen in the right most column of Figures 4.5 and 4.6. 

Holding 𝑇∗ constant did not resolve the problems seen in Figure 4.4a with a double minimum in 

𝜒𝜐
2. Upon sufficient range shrinking, holding 𝑇∗ fixed also did not resolve the problem with large 

standard errors seen in Figures 4.5b, 4.6b, and 4.6c. 
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 T* as a free parameter T* fixed 

(a) The reduced chi-square 𝜒𝜐
2 vs ∆𝑇𝑚. 

 

 

 

 

 

 

(b) Parameter 𝐷 vs ∆𝑇𝑚. 

 

 

 

 

 

 

(c) After range shrinking ∆𝑇𝑚=4, the reduced chi-square 𝜒𝜐
2 vs 𝐷 upon deletion of four data points. 

 

 

  

Figure 4.5: A justification for removing the highest four data points.  

 

 The vertical stripes in parts (a) and (b) are error bars. 

 Reduced Chi-square versus Range shrinking shows that red chi-sqr stabilizes after removing first four data points 

 Parameter D versus range shirnking shows that D changes over the first four data points, but after that constant value 

for remainder of smaller ranges 

 Reduced Chi-square versus D for four data points subtracted. This is in striking contrast to Figure 4.4a. 
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 T* as a free parameters T* fixed 

(a)  

𝐴 vs ∆𝑇𝑚 

  

(b)  

𝐵 vs ∆𝑇𝑚 

  

(c)  

𝐶 vs ∆𝑇𝑚 

  

(d)  

𝑇𝑚
∗  vs ∆𝑇𝑚 

 

 

 

 

Fixed at 𝑇𝑚
∗ = 300.3 K 

 

The literature value ∆𝑇𝑁
∗ = 1.37 K below the transition 

temperature 𝑇𝐼𝑀 48. 

Figure 4.6: The parameter estimates on range shrinking for the full function. 

 

 The red stripes in parts (a) through (c) are error bars. 

 These are the corresponding parameter plots to Figure 4.5 
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4.1.2.5 Range Shrinking using Single Deletion Variance 

The second metric used in determining the number of data points to truncate from the high 

temperature side is single deletion variance 49, 50. This type of test is used to test if any data point 

has undue influence on the fit. It is expected that the data furthest from the phase transition should 

have the least influence on the fit. Two single deletion variance plots are shown in Figure 4.7 with 

the abscissa being the absolute temperature over the whole range of data ∆𝑇𝑁. Recall from Figure 

4.1 that index N refers to all data points available for a given data set. Part (a) shows the case where 

parameters 𝐴, 𝐵, 𝐶, 𝐷, and 𝑇𝑚
∗  are free. Part (b) shows the case where 𝑇𝑚

∗  is fixed at a literature 

value and parameters 𝐴, 𝐵, 𝐶, and 𝐷 are free.  

A single deletion variance plot is constructed by first calculating the variance 𝜎𝑁
2 of a fit 

for the entire data set 𝑁 is found by fitting Equation 4.2 to the data. Then 𝑁 − 1 fits are performed 

in which the ith data point is deleted for each fit. The ith data point is deleted for each fit, resulting 

in data sets each of 𝑁 − 1 data points and variance 𝜎𝑖
2. Each 𝜎𝑖

2 is a measure of the influence of 

each individual data point on the entire fit by removing that data point. A single deletion variance 

plot is the variance 𝜎𝑖
2 of the fit for the ith data point that was deleted versus the corresponding 

temperature. If each data point contributes equally to a fit, then the plot should be a horizontal line. 

The dotted lines in Figure 4.7 correspond to the mean of all 𝜎𝑖
2  plus or minus one standard 

deviation from that mean. Focusing our attention to only the high temperature side, at minimum 

the highest data point can be filtered out of the fitting process. The next three highest temperature 

data points do not significantly affect the fit compared to the mean. The fifth through ninth data 

points from the left do seem to affect the fit more. Based on Figure 4.6, it seems that a reasonable 

range to shrink the data by would be for 4 ≤ (𝑁 −𝑚) ≤ 9 data points. While the 𝜒𝜐
2 versus ∆𝑇𝑚 
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plot places a lower limit to the number of data that can be justifiably deleted, the single deletion 

variance plot places an upper limit to the number of data points that can be justifiably deleted. 

(a)   

𝐴, 𝐵, 𝐶, 𝐷, 

and T*. 

 

(b)  

𝐴, 𝐵, C, 𝐷, 

T* fixed at 

literature 

value. 

 

Figure 4.7: The single deletion variance plots (SDV) for the full fit. 

 

4.1.3 Another Use of Single Deletion Variance: Uncertainty for Each Data Point 

It is now appropriate to mention what goes into estimating the standard errors for all fitting 

parameters that are returned by the fitting routine. The weights 
1

𝜎𝑗
2 for each data set are neither 

known nor given in the papers. The estimate of 𝜎𝑗 is vital for reporting reasonable estimates of the 
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standard errors for the fitting parameters from the fitting routine. The reduced chi-square 𝜒𝜐
2 is 

central to the fitting routine. A consistent method needs to be used for estimating 𝜎𝑗 for all data 

sets studied. 

Without information concerning the uncertainty in each data point 𝜀𝑗, a first approximation 

of 𝜎𝑗 is that for all 𝑗 the data points are equally weighted: 𝜎𝑒𝑟𝑟𝑜𝑟 = 𝜎𝑗. A rewrite of Equation 3.11 

gives, 

𝜒𝜐
2 =

1

𝜐 𝜎𝑒𝑟𝑟𝑜𝑟
2 ∑ (𝜀𝑚𝑜𝑑𝑒𝑙 − 𝜀𝑗)

2𝑁
𝑗 . 

Toward the end of this chapter, a table will show the estimated 𝜎𝑒𝑟𝑟𝑜𝑟 for each data set fitted. 

A second approximation of 𝜎𝑗 is that 𝜎𝑗 should be no more accurate than the order of the 

last decimal of data reported. The last decimal is explicitly given for only eight of the data sets in 

which the numerical tables were directly obtained 37, 51. For 6CB, this would give an estimate of 

𝜎𝑗 ≥ 0.0001. However, strictly speaking, such an estimate of 𝜎𝑗  cannot be used for remaining 

fourteen data sets as these data sets were obtained graphically and the level of precision in the 

analysis can only be assumed at best 38-46. 

Thirdly, 𝜎𝑗 relies on the reduced chi-square 𝜒𝜐
2 (defined by Equation 3.11). For a perfect 

fit, 𝜒𝜐
2 should be equal to one. However, it is unreasonable to expect the model from Equation 4.2 

to perfectly fit all data sets analyzed. Equation 4.2 is developed for the isotropic to achiral nematic 

phase transition, of which 15 data sets fit that description 28, 37-41, 43, 45, 46, 51, 52. One data set has an 

isotropic to chiral nematic phase transition 44. The remaining six data sets have an isotropic to 

smectic phase transition 37, 41, 42. Both chiral nematic order and smectic order have a nematic 

component to their order parameters. Chiral nematic ordering has an additional order parameter to 

account for the pitch of the chirality. Smectic ordering has an additional order parameter to account 
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for layering by way of a periodic density function. Equation 2.28 does not account for these 

additional order parameters. 

The single deletion variance plot is independent of the estimated 𝜎𝑗. The single deletion 

variance plot, Figure 4.7, is composed of the variances 𝜎𝑖
2  corresponding to the removal of 

permittivity data point 𝜀𝑖 at a given temperature 𝑇𝑖. How the removal of each data point 𝜀𝑖 affects 

the fit is now used as an approximation for the weight 
1

𝜎𝑗
2 of each data point. 

In order to reduce any bias and to have a consistent method for estimating weights, the 

above three guidelines will be used. The error 𝜎𝑒𝑟𝑟𝑜𝑟 (or weight 
1

𝜎𝑒𝑟𝑟𝑜𝑟
2 ) will be estimated by first 

taking the mean 𝜎𝑚𝑒𝑎𝑛
2  of the variances 𝜎𝑖

2 and then relating the square of 𝜎𝑒𝑟𝑟𝑜𝑟, 

𝜎𝑒𝑟𝑟𝑜𝑟
2 = √

1

𝑁−1
∑ (𝜎𝑖

2 − 𝜎𝑚𝑒𝑎𝑛
2 )2𝑁

𝑖 .   (4.3) 

In all data sets studied, 𝜎𝑒𝑟𝑟𝑜𝑟 from Equation 4.3 was either the same as or one order of 

magnitude larger than the last reported decimal place per permittivity measurement  𝜀𝑗 . The 

aforementioned approximation scheme for 𝜎𝑒𝑟𝑟𝑜𝑟 is suitable for the purposes of this dissertation. 

See Table 4.6 at the end of this chapter for the estimated average 𝜎𝑒𝑟𝑟𝑜𝑟  for all data sets 

investigated. This allows for a meaningful lower limit approximation to the standard errors. 
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Table 4.1: Selected parameter results for fitting Equation 4.2 to the 6CB sample data. 

Fit Method 
Selection 

Criterion for 𝑚 § 
m Δ𝑇𝑚 (K) 𝑇∗ (K) 𝐴 𝐵 𝐶 𝐷 𝜒𝜐,𝑚

2  

(a) All Parameters Free:         

𝐷𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ≪ 1 𝑚 = N 64 58.0 299.5 ± 0.1 6.13 ± 0.04 11.56 ± 0.02 1.109 ± 0.008 0.37 ± 0.01 18.6 

𝐷𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ≥ 1 𝑚 = N 64 58.0 300.15 ± 0.03 
-4.333106 

± 1000 

4.333106 

± 1000 

4.333106 

± 1000 

1.80105 

± 10000 
17.9 

𝐷𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ≪ 1 𝑚 = N 64 58.0 [[300.33]] 6.39 ± 0.03 11.72 ± 0.02 1.18 ± 0.02 0.50 ± 0.01 19.5 

𝐷𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ≥ 1 𝑚 = N 64 58.0 [[300.33]] 
-3.9194106 

± 100 

3.9194106 

± 400 

2.2260106 

± 300 

1.6780105 

± 300 
18.0 

(b) D Manually Varied:         

𝜒𝜐 𝑚𝑖𝑛
2  & 𝐷 ≪ 1 All Data 64 58.0 299.51 ± 0.04 6.134 ± 0.009 11.560 ± 0.004 1.109 ± 0.008 [0.370] 18.3 

𝐷 = 1 All Data 64 58.0 300.56 ± 0.03 6.893 ± 0.01 12.707 ± 0.009 2.13 ± 0.01 [1.00] 21.8 

𝐷 ≫ 1 All Data 64 58.0 300.30 ± 0.03 -0.05 ± 0.03 22.05 ± 0.06 11.50 ± 0.06 [4.98] 18.8 

𝐷 ≪ 1 All Data 64 58.0 [[300.33]] 6.393 ± 0.005 11.723 ± 0.001 1.177 ± 0.002 [0.500] 19.2 

𝐷 = 1 All Data 64 58.0 [[300.33]] 6.964 ± 0.006 12.773 ± 0.003 2.213 ± 0.004 [1.00] 22.4 

𝜒𝜐 𝑚𝑖𝑛
2  & 𝐷 ≫ 1 All Data 64 58.0 [[300.33]] -0.024 ± 0.006 21.99 ± 0.02 11.44 ± 0.02 [4.98] 18.5 

(c) Range Shrinking:         

Fit based on: All Data 64 58.0 299.49 ± 0.1 6.13 ± 0.04 11.56 ± 0.02 1.109 ± 0.008 0.367 ± 0.01 18.6 

Fit based on: χ𝜐
2 60 49.4 300.10 ± 0.08 7.2 ± 0.3 12.90 ± 8000 2.36 ± 8000 1.0000 ± 3000 4.63 

Fit based on: χ𝜐
2 58 45.3 300.08 ± 0.09 7.2 ± 0.4 12.91 ± 500 2.37 ± 500 1.0000 ± 200 4.75 

Fit based on: Lowest χ𝜐
2 45 24.1 300.56 ± 0.1 7 ± 2 12.66 ± 8000 2.08 ± 8000 1.0000 ± 4000 3.54 

Fit based on: SDV 55 39.3 300.10 ± 0.1 7.2 ± 0.5 12.90 ± 10000 2.36 ± 10000 1.0000 ± 6000 4.91 

Fit based on: All Data 64 58.0 [[300.33]] 6.40 ± 0.03 11.73 ± 0.02 1.18 ± 0.02 0.50 ± 0.01 19.5 

Fit based on: χ𝜐
2 60 49.4 [[300.33]] 7.1 ± 0.2 12.82 ± 700 2.27 ± 700 0.9999 ± 300 5.22 

Fit based on: χ𝜐
2 58 45.3 [[300.33]] 7.1 ± 0.2 12.82 ± 1000 2.27 ± 1000 0.9999 ± 600 5.40 

Fit based on: Lowest χ𝜐
2 45 24.1 [[300.33]] 6.9 ± 0.8 12.76 ± 300 2.20 ± 300 1.0014 ± 200 3.83 

Fit based on: SDV 55 39.3 [[300.33]] 7.1 ± 0.3 12.81 ± 400 2.26 ± 400 0.9996 ± 200 5.32 

§: the number of fitting points 

[   ]: fixed value based on the reduced chi-square 𝜒𝜐
2 plot 

[[ ]]: fixed, literature from Zink et. al. 48 

SDV: Single Deletion Variance 
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4.2 The Model: A Series Expansion of the Full Function 

Section 4.1 served as an introduction to the difficulties in obtaining single valued, 

unambiguous fitting parameter estimates with reasonable standard errors. Section 4.1 also hinted 

at  𝜀𝑓̅𝑢𝑙𝑙 having a dependence on 𝐷 that confuses the fitting routine. Because of this, it is useful to 

find an equivalent model that is simpler and reveals relationships among the fitting parameters in 

𝜀𝑓̅𝑢𝑙𝑙, Equation 4.2. Series expansions are such a tool. For an expansion, all powers in the reduced 

temperature 𝑥 that are reasonable to include are shown. An argument will be constructed so as to 

consider the minimal number of terms needed to adequately describe the data. 

By using a series expansion, this section reveals four important aspects of Equation 4.2 that 

make direct fitting difficult. First, both 𝜀𝐵̅𝐺 and ∆𝜀 ̅have constant contributions. Second, both 𝜀𝐵̅𝐺 

and ∆𝜀 ̅have contributions to the linear coefficient of 𝑥. Third, if 𝜀𝐵̅𝐺 is expanded to 𝑥2, then both 

𝜀𝐵̅𝐺 and ∆𝜀 ̅have contributions to the quadratic coefficient of 𝑥2. Fourth, the expansion of Equation 

4.2 reveals that the 𝐷 = 1 extremum is inherent to the function itself and not necessarily to the 

physics. Table 4.2 at the end of Section 4.2 shows the numerical fitting results for selected fits. 

4.2.1 The Fitting Parameters 

A series expansion 𝜀𝐼̅𝐼 of Equation 4.2 is taken about the argument 
𝐷

√𝑥
 of the arctangent 

being large. Only to second order in the reduced temperature is kept, as higher order terms are 

negligible and contribute no new information to the argument. The subscript “II” denotes that 

terms up to second order in the reduced temperature 𝑥 are included: 

𝜀𝐼̅𝐼 = −(𝐴 +
𝐶

𝐷
(𝐷 +

1

𝐷
)) 𝑥 + (𝐵 − 𝐶) +

𝜋

2

𝐶

𝐷
(𝑥

1

2 + 𝑥
3

2) +
𝐶

𝐷
(

1

3𝐷3 −
1

𝐷
) 𝑥2.  (4.4a) 

The reduced temperature range near the transition is commonly referred to as the critical region.  

In order to simplify the discussion for the critical expansion in Equation 4.4a, the 

coefficients of each power of 𝑥 will be labelled. The critical slope will be referred to as 𝛼: 
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𝛼 = 𝐴 +
𝐶

𝐷
(𝐷 +

1

𝐷
).  (4.4b) 

There are two competing phenomena accounted for by the total slope 𝛼: the background 𝐴 and the 

part due to the pretransitional effect. The dependence of 𝛼 on 𝐷 in Equation 4.4b will be referred 

to as 𝑔, 

𝑔 = (𝐷 +
1

D
).     (4.4c) 

The critical intercept will be referred to as 𝛽: 

𝛽 = 𝐵 − 𝐶.  (4.4d) 

Parameter 𝛽 is the value of the permittivity 𝜀 ̅in Equation 4.2 at the critical temperature 𝑇∗. 

Both the 𝑥
1

2  and 𝑥
3

2  terms have the the ratio of C to D as a common coefficient. The 

coefficient 
𝜋

2
 will be left as is. The ratio of C to D will be refered to as 𝛾: 

𝛾 =
𝐶

𝐷
.      (4.4e) 

Parameter 𝛾 will be factored out of the quadratic term. This leaves the coefficients of 𝑥2 as 𝛾 times 

f, where, 

𝑓 =
1

3𝐷3 −
1

𝐷
.    (4.4f) 

As with contribution 𝑔, parameter f is left as only a function of all positive D. 

Parameter 𝛾 is ubiquitous in the expansion. For this reason it is factored out. When 𝛾 is 

factored out (this includes in 𝛼, 𝑓, and higher order terms in 𝑥), functions of 𝐷 appear that have 

extrema at 𝐷 = 1. It is known that when standard errors are unphysically large, a model is either 

misspecified or stuck in a false minimum due to highly correlated parameters 53. The results seen 

in Section 4.1 show that the fitting routine is stuck at a false minimum centered around extrema 

at 𝐷 = 1. The series expansion in Equation 4.3a further reveals that the parameters are highly 
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correlated. Figure 4.8 shows the minima of the slope contribution 𝑔 and quadratic coefficient 𝑓 

plotted versus 𝐷. 

For the purpose of fitting, Equation 4.4a is rewritten in terms of the critical parameters 𝛼, 

𝛽, 𝛾, and f: 

𝜀𝐼̅𝐼 = −𝛼𝑥 + 𝛽 +
𝜋

2
𝛾 (𝑥

1

2 + 𝑥
3

2) + 𝛾𝑓𝑥2.  (4.5a) 

Equation 4.4a will be referred to as the second order critical expansion 𝜀𝐼̅𝐼. Equation 4.5a is a five 

parameter model: 𝛼, 𝛽, 𝛾, 𝑓, and 𝑇∗. 

 
 

 

Figure 4.8: Plotting the D dependence of critical parameters g and f . For both, the common coefficient γ is factored out. 

 

The critical slope 𝛼 has a dependence on D shown by the dotted red curve. The quadratic coefficient f has a dependence on D 

shown by the solid blue curve. Four values of D are of interest: 

 𝐷 ≤ 0.393: f dominates the linear contribution g. Contribution f can dominate the background slope A as well as the 

singularties 𝑥
1

2 and 𝑥
3

2. This does not seem physical for small 𝑥, since the leading singularity is 𝑥
1

2. 

 𝐷 < 0.577: f is positive and can be appreciable. 

 𝐷 ≥ 0.577: f is zero at 0.577 and then remains small and negative for all larger D. Contribution g dominates for all 

larger values of D. 

 𝐷 = 1: Both f and g are at their global minimum. Contribution f cannot be less than −
2

3
. Contribution g cannot be less 

than 2. 
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4.2.2 Three Choices for the Expansion 

I aim to show that it is justified to leave out the quadratic term from the fitting process and 

that the expansion to 𝑥
3

2 is sufficient for reliably fitting the critical expansion to data. In order to 

do this, the influence of each nonlinear terms 𝑥
1

2 , 𝑥
3

2 , and 𝑥2  on the fitting process must be 

compared. This results in three possible series expansions to fit to the data with: the second order 

expansion 𝜀𝐼̅𝐼, the removal of 𝑥2 from 𝜀𝐼̅𝐼, and the removal of both 𝑥2 and 𝑥
3

2 from 𝜀𝐼̅𝐼. For reduced 

temperatures below 0.30, the dominating singularily of the pretransitional curvature is 
𝜋

2
𝛾 (𝑥

1

2). 

The first additional equation removes the quadratic contribution 𝛾𝑓𝑥2  from the fitting 

process resulting in, 

𝜀3̅/2 = −𝛼𝑥 + 𝛽 +
𝜋

2
𝛾 (𝑥

1

2 + 𝑥
3

2).  (4.5b) 

Equation 4.5b will be referred to as 𝜀3̅/2 , the three-halves critical expansion in the reduced 

temperature 𝑥. Figure 4.8 has shown that when 𝐷 > 0.577, 𝑓 is required to be small and negative. 

The ratio is taken of 𝛾𝑓𝑥2 to 
𝜋

2
𝛾 (𝑥

1

2) for a typical allowed value of 𝑓 (that is, half of the data sets 

fitted with 𝜀𝐼̅𝐼 had allowed values of f that ranged between −
2

3
 and +1). The relative contribution 

of the quadratic term is less than 0.5% at 𝑥 = 0.05 and less than 10% at 𝑥 = 0.3. 

The next term to investigate through elimination is 
𝜋

2
𝛾𝑥

3

2. Relative to the dominating root 

term, the three-halves term is 5% at 𝑥 = 0.05 and 30% at 𝑥 = 0.3. If the three-halves term can be 

neglected in the fitting process then the resultant equation is, 

𝜀𝐼̅ = −𝛼𝑥 + 𝛽 +
𝜋

2
𝛾 (𝑥

1

2).    (4.5c) 

Equation 4.5c will be referred to as the first order critical expansion 𝜀𝐼̅  where the subscript I 

denotes the highest order term in the reduced temperature that is to the first power. The ratio of 
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𝜋

2
𝛾𝑥

3

2 to 
𝜋

2
𝛾𝑥

1

2 hints that 𝑥
3

2 is needed over the range of reduced temperatures for the data fitted. 

The first order expansion 𝜀𝐼̅ is still investigated as it contains the lowest order singularity 𝑥
1

2. One 

of the papers by Rzoska et. al. used an empirical equation that has the same form as Equation 4.5c 

but with the power of the non-linear term left as a free fitting parameter 40. In that equation, the 

nonlinear term’s exponent came out to one-half, within a margin of error 40. As seen in this section, 

the expansion of Equation 4.2 gives an exponent of exactly one-half plus an additional term with 

an exponent of three-halves. 

Unlike expansion 𝜀𝐼̅𝐼 as well as 𝜀𝑓̅𝑢𝑙𝑙, both 𝜀𝐼̅ and 𝜀3̅/2 are four parameter models: 𝛼, 𝛽, 𝛾, 

and 𝑇∗. This means that the parameters of a four parameter model cannot be used in isolation to 

find the parameters of a five parameter model such as 𝜀𝑓̅𝑢𝑙𝑙. Fit results from applying Equations 

4.5b and 4.5c are in Tables 4.2a and 4.2b at the end of this section. 

4.2.3 Fitting Methods and Results 

The fit results for the series expansions 𝜀𝐼̅, 𝜀3̅/2, and 𝜀𝐼̅𝐼 are all compared for typical data in 

Table 4.2 at the end of Section 4.2. The chosen fit results (see the column “Selection Criterion” in 

Figure 4.2) are based on range shrinking that was discussed in Section 4.1. All three expansions 

fit the data well with reasonable, single valued parameter estimates as well as with reaosnable 

standard errors. However, only parameters 𝛽 and 𝑇∗agree well across fitting Equations 𝜀𝐼̅, 𝜀3̅/2, 

and 𝜀𝐼̅𝐼. 

Just as in Section 4.1 for the full function, both range shrinking and fixing T* were used as 

methods. The index used for range shrinking the critical expansions 𝜀𝐼̅ ,  𝜀3̅/2 , and  𝜀𝐼̅𝐼  will be 

referred to as 𝜇. The difference 𝑁 − 𝜇 is the number of data points removed from the typical data 

set. The distinction between 𝑚 and 𝜇 will be important for the heirarchical model proposed in 
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Section 4.3. Parts (a), (b), and (c) of Figure 4.7 show the reduced chi-square and single deletion 

variance plots. As with the full model 𝜀𝑓̅𝑢𝑙𝑙, these are used to identify a reasonable number of data 

points 𝑁 − 𝜇 to delete based on range shrinking. 

4.2.3.1 Results from Fitting the Second Order Expansion 

Figures 4.9 and 4.10 show the 𝜒𝜈
2 and parameter estimates over range shrinking Δ𝑇𝜇 from 

fitting the second order expansion 𝜀𝐼̅𝐼  to typical data. Figure 4.11 shows the single deletion 

variance plots versus absolute temperature 𝑇. Table 4.2c at the end of Section 4.2 shows the 

numerical results for typical data fitted by 𝜀𝐼̅𝐼. 

Under range shrinking Δ𝑇𝜇, 𝜒𝜈
2 in Figure 4.9a drops significantly over the removal of the 

first four data points under both cases of 𝑇∗ as a free and fixed parameter. The corresponding 

parameters 𝑇∗, 𝛼, 𝛽, 𝛾, and 𝑓 (see Figures 4.9b and 4.10 parts (a) through (d), respectively in the 

left column) also show this trend when 𝑇∗ is a free parameter. When 𝑇∗ is fixed, parameters 𝛼, 𝛽, 

𝛾, and 𝑓 do not change significantly compared to when 𝑇∗ is a free parameter (see Figures 4.10 

parts (a) through (d) in the left column). Beyond four data points, it is not clear if the drop in 𝜒𝜈
2 

from a value of 4 to 2 is statistically significant for the case of 𝑇∗ free. For this, Table 4.2 shows a 

reasonable range of selected fits for range shrinking for (𝑁 − 𝜇) ≤ 8.  

The following argument for exclusion of the quadratic term 𝛾𝑓𝑥2 will partially follow the 

same argument made for the quadratic background coefficient 𝑓𝐵𝐺  discussed in Section 4.1 and 

shown in Figure 4.2. In addition to the range shrinking argument, the functional form of 𝑓 seen in 

Figure 4.8 is taken into account. The behavior of the function under both cases of 𝑇∗ as a free and 

fixed parameter is considered. 
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First, in Figure 4.10d with 𝑇∗ free, parameter 𝑓 is increasingly negative on decreasing Δ𝑇𝜇 

and spans a wide range. Similar to the case of 𝑓𝐵𝐺  in Figure 4.2a, 𝑓 does not level out. When 𝑇∗ is 

fixed for (𝑁 − 𝜇) ≥ 4 parameter 𝑓 is better constrained. 

Second, Figure 4.8 revealed that for 𝑓 has a minimum at a value of −
2

3
. On range shrinking 

by four data points and more, all values of 𝑓 in Figure 4.10d are too negative given that 𝑓𝐵𝐺  is 

probably near zero (as defined in in Equation 4.1b and shown in Figure 4.2a). Half of the data sets 

that were fitted with 𝜀𝐼̅𝐼  on range shrinking Δ𝑇𝜇  had estimates for 𝑓  that were less than the 

minimum value of −
2

3
 irrespective of fixing 𝑇∗. The other half of the data sets had a typical value 

of 𝑓 that varied between −
2

3
 and +1. 

The single deletion variance plot seen in Figure 4.11 reveals how each data point 

contributes to the fit of 𝜀𝐼̅𝐼. Ideally, the deleted variances should follow a horizontal line or at least 

randomly vary around the average of the variances (seen by the center, horizontal blue short dashed 

line, where the black horizontal lines represent one standard deviation from that average). 

In both cases of 𝑇∗ free and fixed, it is seen that the highest temperature data point unduly 

affects the fit over the other data points. The model by Equation 4.2 aims to describe the 

pretransitional curvature at the lowest data points. Given a sufficient temperature range, the highest 

temperature data points should not affect the fit. Based on Figure 4.11, it is justifieable to range 

shrink by at least the highest temperature data point. 

When 𝑇∗ is a free parameter (Figure 4.11a), the first data point also seems to greatly affect 

the fit. However, this should be expected, as the determination of 𝑇∗ is sensitive to the purpose of 

the model which is to characterize the pretransitional curvature. Note that in Figure 4.11b, when 
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𝑇∗ is fixed, the lowest temperature data points do not affect the fit as much and have more of a 

random contribution. 

 𝑇∗ is a free parameter 𝑇∗ is fixed at literature value 

(a)  

𝜒𝜈
2 vs ∆𝑇𝜇 

 
  

(b)  

𝑇∗ vs ∆𝑇𝜇 

 
 

Fixed at 𝑇𝜇
∗ = 300.3 K. 

 

The literature value ∆𝑇𝜇
∗ = 1.37 K below the transition 

temperature 𝑇𝐼𝑀 48. 

Figure 4.9: Second order expansion goodness of fit and critical temperature. 
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 T* is a free parameter T* is fixed at literature value 

(a)  

𝛼 vs ∆𝑇𝜇 

  

(b)  

𝛽 vs ∆𝑇𝜇 

  

 

(c)  

𝛾 vs ∆𝑇𝜇 

  

(d)  

𝑓 vs ∆𝑇𝜇 

 

  

Figure 4.10: Second order Expansion fitting parameters. The blue, horizontal lines represent values from the raw data. 
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4.2.3.2 Results from Fitting the Three-Halves Order Expansion 

Figures 4.12 and 4.13 show the 𝜒𝜈
2 and parameter estimates over range shrinking Δ𝑇𝜇 from 

fitting the three-halves order expansion 𝜀3̅/2. Figure 4.14 shows the single deletion variance plots 

versus absolute temperature 𝑇. Table 4.2b at the end of Section 4.2 shows the numerical results 

for typical data fitted by 𝜀3̅/2. 

Under range shrinking Δ𝑇𝜇, 𝜒𝜈
2 in Figure 4.12a drops significantly over the removal of the 

four highest temperature data points when 𝑇∗ is a free parameter. The 𝜒𝜈
2 is weakly constant for 

(a)  

𝑇∗ free 

 

 
 

(b)  

𝑇∗ fixed 

 

 

Figure 4.11: Second order expansion single deletion variance plot. 
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4 ≤ (𝑁 − 𝜇) < 12. However, when 𝑇∗ is fixed, the choice of range shrinking Δ𝑇𝜇 based on 𝜒𝜈
2 is 

only clear to the highest temperature data point. For fixed 𝑇∗, the the 𝜒𝜈
2 plot appreciably decreases 

on decreasing Δ𝑇𝜇. 

The corresponding parameter plots of 𝑇∗, 𝛼, and 𝛾 (see Figures 4.12b and 4.13 parts (a) 

through (c)) have a smaller spread in parameter estimates compared to 𝜀𝐼̅𝐼. Parameter 𝛽 is well 

determined for fitting both 𝜀3̅/2  and 𝜀𝐼̅𝐼  over range shrinking Δ𝑇𝜇 . Additionally, unlike the 

parameter estimates for 𝜀𝐼̅𝐼 , the parameter estimates for 𝜀3̅/2  follow a non-monotonic trend 

versus Δ𝑇𝜇 which allows for a better approximation of 𝑇∗, 𝛼, 𝛽, and 𝛾. 

Figure 4.13c shows the parameter 𝛾 versus range shrinking Δ𝑇𝜇. The fit of 𝜀3̅/2 gives a 

better estimate for 𝛾 than 𝜀𝐼̅𝐼 (see in Figure 4.10c). The estimates using 𝜀3̅/2 are better in that, for 

range shrinking beyond four data points, the rate of change in 𝛾 per Δ𝑇𝜇 is even less than for 𝜀𝐼̅𝐼. 

As before, when T* is held constant, 𝛾 is more narrowly constrained. 

The single deletion variance plots seen in Figure 4.14 reveal how each data point 

contributes to the fit of 𝜀3̅/2  to typical data. Ideally, the deleted variances should follow a 

horizontal line or at least randomly vary around the average of the variances (seen by the center, 

horizontal blue short dashed line, where the black horizontal lines represent one standard deviation 

from that average). 

The single deletion variance plots for 𝜀3̅/2  have an important distinction from 𝜀𝐼̅𝐼  (see 

Figure 4.11). The lower temperature data points for both cases of 𝑇∗ free (Figure 4.14a) and fixed 

(Figure 4.14b) are more similar than the Figures 4.11a and 4.11b. The Figures 4.14 a and b also 

do not unduly contribute to the fit for the low temperature data points. Unduly, here, refers to the 
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low temperature variance points lying within one standard deviation of the avarance variance from 

Figure 4.14. 

In both cases of 𝑇∗ free and fixed, it is seen that the highest temperature data point unduly 

affect the fit over the other data points. The model by Equation 4.2 aims to describe the 

pretransitional curvature at the lowest data points. Given a sufficient temperature range, the highest 

temperature data points should not affect the fit. Most of the variances lie within one sigma of the 

average variance in Figure 4.14. Based on Figure 4.14, it is justifieable to range shrink by at least 

the highest temperature data point, which lies well beyond five sigma from the average variance. 

 T* as a free parameter T* fixed at literature value 

 

(a)  

𝜒𝜈
2 vs ∆𝑇𝜇   

 
 

 
 

 

(b)  

𝑇 vs ∆𝑇𝜇  

 

 

 
 

Fixed at 𝑇𝜇
∗ = 300.3 K. 

 

The literature value ∆𝑇𝜇
∗ = 1.37 K below the transition 

temperature 𝑇𝐼𝑀 48. 

 

Figure 4.12: Three-halves expansion goodness of fit and critical temperature. 
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 T* is a free parameter T* is fixed at literature value 

(a)  

𝛼 vs ∆𝑇𝜇  

  

(b)  

𝛽 vs ∆𝑇𝜇  

  

(c)  

𝛾 vs ∆𝑇𝜇   

 

  

Figure 4.13: Three-halves order expansion fitting parameter results 
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(a)  

𝑇∗ free 

 

 
 

(b)  

𝑇∗ fixed  

 

 
 

Figure 4.14: Three-halves order expansion single deletion variance plots. 

 

4.2.3.3 Results from Fitting the First Order Expansion 

Figures 4.15 and 4.16 show the 𝜒𝜈
2 and parameter estimates over range shrinking Δ𝑇𝜇 from 

fitting the first order expansion 𝜀𝐼̅ to typical data. Figure 4.17 shows the single deletion variance 

plots versus absolute temperature 𝑇. Table 4.2a at the end of Section 4.2 shows the numerical 

results for typical data fitted by 𝜀𝐼̅. As with the previous two expansions, there is a significant drop 
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in 𝜒𝜈
2 over range shrinking by up to four data points. The 𝜒𝜈

2 is relatively constant for (𝑁 − 𝜇) >

4 for both cases of 𝑇∗ when fixed and free. 

The corresponding parameter estimates 𝑇∗, 𝛼, 𝛽, and 𝛾 are seen in Figures 4.15b and 4.16 

parts (a) through (c), respectively. The spread in the parameter estimates for the 4 < (𝑁 − 𝜇) <

12 is quite small. The following is a comparison of the spread in parameter estimates for the range 

of 4 < (𝑁 − 𝜇) < 12  when 𝑇∗  is a free parameter. This range is chosen because 𝜀3̅/2  has a 

relatively constant 𝜒𝜈
2. For fits 𝜀𝐼̅, 𝜀3̅/2, and 𝜀𝐼̅𝐼, parameter 𝛼 respectively had a spread of 0.1, 0.5, 

and 2.5. Parameter 𝛽 respectively had a spread of 0.02, 0.04, and 0.07. Parameter 𝛾 respectively 

had a spread of 0.01, 0.17, and 0.5. Parameter 𝑇∗ respectively had a spread of 0.02, 0.3, and 0.5. 

Under range shrinking, the fits for 𝜀𝐼̅ and 𝜀3̅/2 have no obvious advantage over each other. 

However, the fit for the spread in the parameter estimates for 𝜀𝐼̅ and 𝜀3̅/2 are more similar than 𝜀𝐼̅𝐼. 

The parameter estimate values, however, are not all in agreement. Parameters 𝑇∗ and 𝛽 are in good 

agreement among the three expansions. Parameters 𝛼 and 𝛾 are not in good agreement among 𝜀𝐼̅, 

𝜀3̅/2, and 𝜀𝐼̅𝐼. 

The single deletion variance plots seen in Figure 4.17 are similar to the case of the three-

halves order expansion in Figure 4.14. Most of the deleted variances are within one standard 

deviation of the average. Just as in the case of 𝜀3̅/2 and 𝜀𝐼̅𝐼, the highest temperature data point has 

a single deletion variance that is unduly affecting the fit for both a fixed and free 𝑇∗. It is justified 

to range shrink by at least the highest temperature data point based on Figure 4.17. 
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 T* is a free parameter T* is fixed 

 

(a)  

 𝜒𝜈
2 vs ∆𝑇𝜇 

 
 

 
 

 

(b)  

𝑇∗ vs ∆𝑇𝜇 

 
 

Fixed at 𝑇𝜇
∗ = 300.3 K. 

 

The literature value ∆𝑇𝜇
∗ = 1.37 K below the transition 

temperature 𝑇𝐼𝑀 48. 

Figure 4.15: First order expansion goodness of fit and critical temperature. 
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 T* is a free parameter T* is fixed 

 

(a)  

𝛼 vs ∆𝑇𝜇 

 

  

 

(b)  

𝛽 vs ∆𝑇𝜇 

  

 

(c)  

𝛾 vs ∆𝑇𝜇 

  

Figure 4.16: First order Expansion fitting parameter results. 
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(a)  

𝑇∗ free 

 

 
 

 

(b)  

𝑇∗ fixed 

 

 
 

Figure 4.17: First order expansion single deletion variance plots. 

 

4.2.4 Recap of the Expansion Fits 

Figures 4.10, 4.13, and 4.16 show that all three expansions return reasonably determined 

parameter estimates for 𝑇∗ , 𝛼 , 𝛽  and 𝛾  over range shrinking. However, parameter 𝑓  from the 

second order expansion 𝜀𝐼̅𝐼  (see Figure 4.10) changes by over an order magnnitude for range 

shrinking. The fit of 𝜀𝐼̅𝐼 is not stable over range shrinking. This leaves the expansions 𝜀𝐼̅ and 𝜀3̅/2 

as reasonable choices. 
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Table 4.2: Fitting parameter results using expansion Equations 4.4a, b, and c applied to the 6CB sample data. 

Selection 

Criterion for 𝜇 § 
𝜇 Δ𝑇𝜇 (K) 𝑇∗ (K) 𝛼 𝛽 𝛾 𝑓 𝜒𝜐,m

2  

(a) 𝜀𝐼̅, Range Shrinking       

All Data 64 58.0 300.99 ± 0.02 8.93 ± 0.02 10.624 ± 0.001 1.759 ± 0.007 - 27.5 

𝜒𝜐
2 60 49. 4 300.60 ± 0.03 9.47 ± 0.03 10.591 ± 0.002 1.95 ± 0.01 - 3.58 

𝜒𝜐
2 56 41.4 300.51 ± 0.04 9.60 ± 0.04 10.584 ± 0.003 1.99 ± 0.01 - 3.21 

SDV 53 36.0 300.53 ± 0.04 9.56 ± 0.04 10.586 ± 0.003 1.98 ± 0.02 - 3.36 

All Data 64 58.0 [[300.33]] 9.36 ± 0.01 10.5835 ± 0.0005 1.955 ± 0.003 - 37.7 

𝜒𝜐
2 60 49. 4 [[300.33]] 9.67 ± 0.01 10.5734 ± 0.0006 2.034 ± 0.004 - 4.65 

𝜒𝜐
2 56 41.4 [[300.33]] 9.75 ± 0.02 10.5710 ± 0.0007 2.053 ± 0.004 - 3.52 

SDV 53 36.0 [[300.33]] 9.76 ± 0.02 10.5708 ± 0.0007 2.055 ± 0.005 - 3.72 

(b) 𝜀3̅/2, Range Shrinking       

All Data 64 58.0 300.15 ± 0.03 12.32 ± 0.04 10.533 ± 0.003 2.41 ± 0.01 - 17.6 

𝜒𝜐
2 60 49.4 299.69 ± 0.05 13.12 ± 0.06 10.491 ± 0.004 2.65 ± 0.02 - 6.13 

𝜒𝜐
2 58 45.3 299.72 ± 0.05 13.07 ± 0.07 10.493 ± 0.004 2.63 ± 0.02 - 6.31 

SDV 55 39.3 299.83 ± 0.05 12.86 ± 0.08 10.504 ± 0.004 2.57 ± 0.02 - 6.26 

All Data 64 58.0 [[300.33]] 12.10 ± 0.01 10.5472 ± 0.0006 2.336 ± 0.004 - 17.7 

𝜒𝜐
2 60 49.4 [[300.33]] 12.27 ± 0.02 10.5426 ± 0.0006 2.374 ± 0.004 - 10.0 

𝜒𝜐
2 54 37.6 [[300.33]] 12.06 ± 0.02 10.5477 ± 0.0007 2.329 ± 0.004 - 7.59 

SDV 55 39.3 [[300.33]] 12.10 ± 0.02 10.5467 ± 0.0007 2.338 ± 0.005 - 8.17 

(c) 𝜀𝐼̅𝐼, Range Shrinking 
 

     

All Data 64 58.0 299.20 ± 0.09 14.8 ± 0.2 10.431 ± 0.009 3.04 ± 0.05 0.84 ± 0.05 15.0 

𝜒𝜐
2 60 49.4 300.47 ± 0.06 10.8 ± 0.2 10.573 ± 0.006 2.11 ± 0.04 -1.4 ± 0.1 4.03 

𝜒𝜐
2 61 51.4 300.24 ± 0.07 11.6 ± 0.2 10.548 ± 0.006 2.29 ± 0.04 -0.7 ± 0.1 6.34 

SDV 55 39.3 300.86 ± 0.05 9.2 ± 0.2 10.618 ± 0.005 1.78 ± 0.04 -3.6 ± 0.3 2.4 

All Data 64 58.0 [[300.33]] 12.21 ± 0.05 10.545 ± 0.001 2.355 ± 0.009 0.09 ± 0.04 18.0 

𝜒𝜐
2 60 49.4 [[300.33]] 11.18 ± 0.06 10.560 ± 0.001 2.195 ± 0.01 -1.16 ± 0.07 4.03 

𝜒𝜐
2 55 39.3 [[300.33]] 10.80 ± 0.09 10.565 ± 0.001 2.138 ± 0.01 -1.8 ± 0.1 2.43 

SDV 55 39.3 [[300.33]] 10.80 ± 0.09 10.565 ± 0.001 2.138 ± 0.01 -1.8 ± 0.1 2.43 

§: the number of fitting points 

[[ ]]: fixed, literature from Zink et. al. 48 

SDV: Single Deletion Variance 

4.3 A Hierarchical Model 

This section aims to reveal a workaround to the problems encountered in the fitting process 

encountered in Sections 4.1 and 4.2. The shortcomings of using either the full function 𝜀𝑓̅𝑢𝑙𝑙 or the 
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critical expansions 𝜀𝐼̅𝐼, 𝜀3̅/2, and 𝜀𝐼̅ in isolation were seen in Sections 4.1 and 4.2, respectively. 

This section will build on the critical expansions 𝜀𝐼̅𝐼, 𝜀3̅/2, and 𝜀𝐼̅ so as to achieve a self-consistent, 

hierarchical model that bypasses these problems. The relationships observed in Equations 4.4a 

through 4.4f among the parameters of 𝜀𝑓̅𝑢𝑙𝑙  and those of the series expansion will facilatate a 

multilevel model solution. 

Each of the three series expansions 𝜀𝐼̅, 𝜀3̅/2, and 𝜀𝐼̅𝐼 were used as separate estimators for 

parameters 𝛼, 𝛽, 𝛾, and 𝑇∗. This section will show which is the most reliable estimator of those 

critical parameters and how to use those estimates to obtain reasonable estimates for parameters 𝐴, 

𝐵, and 𝐶. Table 4.3 at the end of Section 4.3 shows the numerical fitting results for selected fits to 

typical data. 

4.3.1 Untangling the Parameters: Three Expressions for D 

As seen in the series expansion of Equation 4.2, parameters B, C, and D of 𝜀𝑓̅𝑢𝑙𝑙 are highly 

correlated. Either B, C, or D needs to be expressed in terms of the others in order to untangle these 

parameters and to obtain both reasonable and unambiguous results. Reasonable here refers to both 

the parameter estimates and the reported standard errors not being unphysically large. 

In Section 4.2 it is seen that the critical expansions 𝜀𝐼̅𝐼, 𝜀3̅/2, and 𝜀𝐼̅ (that is, Equations 4.5a, 

4.5b and 4.5c, respectively) fit the data well and return unambiguous, well determined estimates 

for parameters 𝛼, 𝛽, 𝛾, and 𝑇∗ (see Table 4.2). Although the estimated uncertainty in the parameter 

estimates of 𝑓 are reasonably determined from using 𝜀𝐼̅𝐼, parameter 𝑓 does not become constant 

over range shrinking. For typical data that is range shrunk while using 𝜀𝐼̅𝐼, parameter 𝑓 is not 

constrained in accordance with Equation 4.4f. Half of the data sets available return values for 𝑓 

that violate Figure 4.8. This happens for half of the data sets available and may not lead to a robust 

method that is the focus of this chapter. 
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Parameter D is chosen to be substituted in the full function 𝜀𝑓̅𝑢𝑙𝑙. Figure 4.4 shows that, 

when parameter D is fixed, the standard errors are reasonble for parameters B and C. However, 

manually varying D also revealed a false extremum cenetered around 𝐷 = 1 with no resolution to 

the inifinte standard errors 53. Figures 4.10b, 4.13b, and 4.16b reveal that parameter 𝛽  (the 

difference between B and C) is a well determined quantity irrespective of the fitting model used as 

well as range shrinking. 

All three critical expansions reveal two common relationships for parameter D that serve 

both as a consistency check and as a way to untangle B, C, and D. From parameter 𝛼 in Equation 

4.4b, D can be related directly to the full function parameters A and C as well as critical parameter 

𝛼: 

𝐷 = √
𝐶

(𝛼−𝐴)−𝐶
 .  (4.6a) 

Note that parameters 𝛼, 𝐴, C, and D are defined as positive. Call Equation 4.6a a calculated 

parameter 𝐷1. The second equation for D relies on the ratio of two critical expansion relations, 

Equations 4.4d and 4.4e: 

𝐷 =
𝐵−𝛽

𝛾
.  (4.6b) 

Call Equation 4.6b 𝐷2. By definition, 𝛽 and 𝛾 are positive. Parameter 𝐵 is greater than 𝛽. 

Additionally, 𝜀𝐼̅𝐼 has an expression for D that is a cubic equation found from paramter f 

defined in Equation 4.4f: 

3𝑓𝐷3 + 3𝐷2 = 1.  (4.6c) 

Call the results of Equation 4.6c as 𝐷3. The solution 𝐷3 is multivalued and difficult to solve for 

analytically. It will only be used as a consistency check with equations 𝐷1 and 𝐷2. As will be seen 

in Tables 4.3 and 4.4, there are cases in which 𝐷1 and 𝐷2 are not equal. 
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4.3.2 Untangling the Parameters: the Hierarchical Model 

Equations 4.6a and 4.6b reveal that calculated parameters 𝐷1 and 𝐷2 are simultaneously 

dependent on the parameters from both the full function 𝜀𝑓̅𝑢𝑙𝑙 and the series expansion 𝜀𝑠̅𝑒𝑟𝑖𝑒𝑠 (that 

is, 𝜀𝐼̅𝐼, 𝜀3̅/2, or 𝜀𝐼̅). In order to find 𝐷, both the full function and the series expansion must be fitted 

to data. 

Either 𝐷1 or 𝐷2 can be used as a substitute for 𝐷 in the full function 𝜀𝑓̅𝑢𝑙𝑙. Parameter 𝐷1 

is chosen to substitute 𝐷 in 𝜀𝑓̅𝑢𝑙𝑙. A physical solution for 𝐷 should be real, positive, and single 

valued. Also, based on the definition of 𝛾, it stands to reason that any relationship for parameter 

D used in the fitting process must involve C. For this, 𝐷 is substituted with 𝐷1 while 𝐷2 is used 

as a consistency check. The resultant fitting equation that untangles B, C, and D from each other 

is, 

𝜀𝑚̅𝑜𝑑 = −𝐴𝑥 + 𝐵 − 𝐶(1 + 𝑥) [1 −  √𝑥 (
𝐶

(𝛼−𝐴)−𝐶
)
−1

𝑎𝑟𝑐𝑡𝑎𝑛 (√
1

𝑥
(

𝐶

(𝛼−𝐴)−𝐶
))]. (4.7) 

Equation 4.7 will be referred to as the modified full function, 𝜀𝑚̅𝑜𝑑. 

Figure 4.18 shows a flowchart that clarifies the proposed heirarchical model. The most 

robust approach is to first estimate the critical parameters 𝛼, 𝛽, 𝛾, and 𝑇∗ by fitting the series 

expansion 𝜀𝑠̅𝑒𝑟𝑖𝑒𝑠 (that is, 𝜀𝐼̅𝐼, 𝜀3̅/2, or 𝜀𝐼̅) to data for a given temperature range Δ𝑇𝜇. The chosen 

values for parameters 𝛼 and 𝑇∗ are then substituted into 𝜀𝑚̅𝑜𝑑. Then 𝜀𝑚̅𝑜𝑑 is fitted to the data as 

a three parameter sub-model for a given temperature range Δ𝑇𝑚. The consistency check is applied, 

𝐷1(𝛼𝜇, 𝐴𝑚, 𝐶𝑚) = 𝐷2(𝐵𝑚, 𝛽𝜇, 𝛾𝜇). (4.8) 

If the identity in Equation 4.8 is false, then the fit is considered inconsistent and unreasonable. The 

series expansion to be chosen (𝜀𝐼̅, 𝜀3̅/2, or 𝜀𝐼̅𝐼) will be determined, in part, by Equation 4.8 as well 

as how well this applies over all 22 data sets investigated. 
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Figure 4.18: Flow chart of the proposed heirarchical fitting process. 

 

Both expressions for D (Equations 4.6a and 4.6b) must be equal for a physical solution. 

 

4.3.3 Fitting Methods and Results 

As with the full function in Section 4.1 as well as the series expansions in Section 4.2, 

range shrinking is used. The range Δ𝑇𝑁 is that of the entire temperature range for a given data set. 

The nature of 𝜀𝑚̅𝑜𝑑  involves two temperature ranges, hence two approaches: Δ𝑇𝜇 and Δ𝑇𝑚. As 

with Section 4.1, the index 𝑚 will refer to range shrinking using 𝜀𝑚̅𝑜𝑑. The index 𝜇 refers to range 

shrinking using the series expansions. Both data ranges 𝑁 −𝑚 and 𝑁 − 𝜇 do not necessarily have 

to be the same since the critical expansion is an approximation of the full function. The first 

approach is seen numerically in Table 4.3. In this case, Δ𝑇𝑚 is fixed at Δ𝑇𝑁 while Δ𝑇𝜇 varies (that 

is, the results from the critical fits). Second, Table 4.4 shows the case of Δ𝑇𝑚 = Δ𝑇𝜇, where both 

are simultaneously range shrunk. 

The following subsections individually apply the parameter results 𝛼, 𝛽, 𝛾, and 𝑇𝜇
∗ from 𝜀𝐼̅, 

𝜀3̅/2, and 𝜀𝐼̅𝐼 to 𝜀𝑚̅𝑜𝑑. The case 𝑇𝜇
∗ fixed will not be addressed from this point onward. As seen in 

Section 4.2, holding 𝑇𝜇
∗ fixed did not resolve the problems of 𝐷 going to one, the other parameter 

Expansion Parameters from either 𝜀𝐼̅, 𝜀3̅/2, or  𝜀𝐼̅𝐼 

Modified Full Function Parameters from 𝜀𝑚̅𝑜𝑑 

 Consistency Check: Does 𝐷1 = 𝐷2?  

 Are the standard errors reasonable? 

𝛽 

 

𝛾 

 

𝐵 

  

Calculate 

𝐷2 

𝑇∗ 

  

𝛼 

  

Calculate 

𝐷1 

𝐴 

  

𝑇∗ 

  

𝛼 

  

𝐶 
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estimates having inordinately large standard errors, and the cases of a double minimum in 𝜒𝜈
2-

space. 

4.3.3.1 Modified Fit Results from Using the First Order Critical Parameters 

Figures 4.19, 4.20, and 4.21 are the main results from using the parameter estimates 𝛼, 𝛽, 𝛾, 

and 𝑇∗ from 𝜀𝐼̅  followed by plugging those estimates into the modified full fit 𝜀𝑚̅𝑜𝑑 . The first 

column of Figures 4.19 and 4.20 show when Δ𝑇𝜇 is varied and Δ𝑇𝑚 is fixed at Δ𝑇𝑁. The second 

column shows the case of both Δ𝑇𝜇 and when Δ𝑇𝑚 in comparison to Figures 4.5 and 4.6. The 

numerical results for the chosen fits using 𝜀𝐼̅ at 𝑚 = 𝑁 with 𝜇 varied are shown in Table 4.3a. The 

numerical results for the case of 𝑚 = 𝜇 are shown in Table 4.4a. 

Let column (a) of Figure 4.5a (when 𝜀𝑓̅𝑢𝑙𝑙 was used) be a measure of the order of magnitude 

of the goodness of fit χ𝜐
2. Figure 4.19a shows that χ𝜐

2 from using 𝜀𝑚̅𝑜𝑑 is an order of magnitude 

larger than using 𝜀𝑓̅𝑢𝑙𝑙. This is indicative of the results from 𝜀𝐼̅ not being appropriate for use with 

𝜀𝑚̅𝑜𝑑. This happens for all data sets that were fitted. 

Figures 4.19c, 4.20a, and 4.20b (compared to Figures 4.5 and 4.6, column (a)) reveal that 

the problem of unphysical standard errors persists for parameters 𝐵, 𝐶, and 𝐷. Figure 4.20b reveals 

that 𝐷1 and 𝐷2 disagree. The calculation of 𝐷1 returns a value of one, yet the calculation of 𝐷2 is 

about 10% lower than 𝐷1. The red and blue veritical lines are error bars. Tables 4.3a and 4.4a show 

the chosen fits. 

  



www.manaraa.com

95 

 

 

 Set 𝑚 = 𝑁, 𝜇 varies Set 𝑚 = 𝜇, 𝑚 varies with 𝜇 

(a)  

χ
𝜐
2  vs. Δ𝑇𝑚 

  

(b)  

𝐴𝑚 vs. Δ𝑇𝑚 

 
 

(c)  

𝐵𝑚 vs. Δ𝑇𝑚 

  

Figure 4.19: Modified full function fitting parameter results using the first order parameter estimates. 
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 Set 𝑚 = 𝑁, 𝜇 varies Set 𝑚 = 𝜇, 𝑚 varies with 𝜇 

(a)  

𝐶𝑚  vs. 

Δ𝑇𝑚 

  

(b)  

𝐷𝑚  vs. 

Δ𝑇𝑚 

  

Figure 4.20: Modified full function fitting parameter results using the first order parameter estimates. 
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Figure 4.21: Modified full function single deletion variance plot using the first order expansion parameters. 

 

                     For the case of 𝑚 = 𝑁. 

 

4.3.3.2 Modified Fit Results from Using the Three-Halves Order Critical Parameters 

Figures 4.22, 4.23, and 4.24 are the main results from using the parameter estimates using 

𝜀3̅/2 followed by plugging those estimates into the modified full fit 𝜀𝑚̅𝑜𝑑 . The first column of 

Figures 4.22 and 4.23 show when Δ𝑇𝜇 is varied while Δ𝑇𝑚 is fixed at Δ𝑇𝑁. The second column 

shows the case when both Δ𝑇𝜇 and Δ𝑇𝑚 are simultaneously varied. The numerical results for the 

chosen fits using 𝜀3̅/2 at 𝑚 = 𝑁 with 𝜇 varied are shown in Table 4.3b. The numerical results for 

the case of 𝑚 = 𝜇 are shown in Table 4.4b. 

Relative to Figure 4.5a column a, χ𝜐
2 barely changes in Figure 4.22a column (a), and is 

about the same order of magnitude as χ𝜐
2 for the full fit 𝜀𝑓̅𝑢𝑙𝑙. When all of the 𝜀𝑚̅𝑜𝑑 fits are not 

explicitly range shrunk in column (a) (that is, 𝑚 = 𝑁 , but 𝜇  is range shrunk), the parameter 

estimates are relatively constant with low standard errors versus Δ𝑇𝜇. The parameter estimates in 
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column (a) begin to deviate when Δ𝑇𝜇~40 K and below. This shows that the 𝑥
3

2 term in the series 

expansion is needed in order to properly relate the critical expansion parameters to the full fit 

parameters (refer to Equations 4.4a through 4.4f). 

Recall that the χ𝜐
2 over range shrinking for all of the fits in Sections 4.1 and 4.2 (see Figures 

4.5a, 4.9a, 4.12a, and 4.15a) reveal that truncating a few data points from the high temperature 

side is necessary for typical data. This is the reasoning behind the second approach of explicitly 

range shrinking 𝜀𝑚̅𝑜𝑑 such that 𝑚 = 𝜇. The results are seen in Figure 4.22a column (a), relative to 

Figures 4.5a and 4.22a, χ𝜐
2 is much lower in Figure 4.11b. The parameter estimates in Figures 4.22 

and 4.23 vary far less in column (b) than in column (a). 

Lastly, the consistency check in Equation 4.8, holds in Figure 4.23b for the calculated 

parameters 𝐷1 and 𝐷2 over all range shrinking. The standard errors are also reasonable. Column 

(b), where 𝑚 = 𝜇, further shows that 𝐷1 as better determined overall range shrinking Δ𝑇𝜇 and Δ𝑇𝑚. 

All data sets fitted returned reasonable results when 𝑚 = 𝜇. 
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 Set 𝑚 = 𝑁, 𝜇 varies Set 𝑚 = 𝜇, 𝑚 varies with 𝜇 

(a)  

χ
𝜐
2  vs. 

Δ𝑇𝑚 

 
 

(b)  

𝐴𝑚 vs. 

Δ𝑇𝑚 

 

 

(c)  

𝐵𝑚 vs. 

ΔT𝑚 

 

 

Figure 4.22: Modified full function fitting parameter results using the three-halves order parameters estimates. 
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 Set 𝑚 = 𝑁, 𝜇 varies Set 𝑚 = 𝜇, 𝑚 varies with 𝜇 

(a)  

𝐶𝑚 vs. 

Δ𝑇𝑚 

  

(b)  

𝐷𝑚 vs. 

Δ𝑇𝑚 

  

Figure 4.23: Modified full function fitting parameter results using the three-halves order parameters. 
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Figure 4.24: Modified full function single deletion variance plot using the three-halves order parameters. 

 

                    For the case of 𝑚 = 𝑁. 

 

4.3.3.3 Modified Fit Results from Using the Second Order Critical Parameters 

For completeness, the results of using 𝜀𝐼̅𝐼 as an estimator for the critical fit parameters are 

discussed. With the same pattern as Figures 4.19 through 4.24, Figures 4.25, 4.26, and 4.27 show 

the results for using the parameter estimates from 𝜀𝐼̅𝐼. These fits are equally ambiguous as Section 

4.3.3.1 where the results for 𝜀𝐼̅ are shown. The chosen numerical fit results using 𝜀𝐼̅𝐼 at 𝑚 = 𝑁 

with 𝜇 varied are shown in Table 4.3c. The numerical results for the case of 𝑚 = 𝜇 are shown in 

Table 4.4c. 

For both methods in Figures 4.25 and 4.26 (that is, column (a) where 𝑚 = 𝑁 compared 

with column (b) where 𝑚 = 𝜇), χ𝜐
2 increases by up to two orders of magnitude larger than all of 

the previous fits when range shrinking beyond six data points. This same pattern is seen via the 

standard errors in Figure 4.25b, 4.26a, and 4.27b. After range shrinking by four data points, the 

standard errors become unreasonable. 
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Figure 4.26b shows the results for the calculated D parameter and the consistency check. 

Parameters 𝐷1  and 𝐷2  are equal to each over the first four data points of range shrinking. 

However, the value of 𝐷 over range shrinking does not remain constant. Beyond four data points 

of range shrinking (counting from the right to left of the plot), the values of 𝐷1 and 𝐷2 diverge 

from each other with both returning unreasonable standard errors. 
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 Set 𝑚 = 𝑁, 𝜇 varies Set 𝑚 = 𝜇, 𝑚 varies with 𝜇 

(a)  

χ
𝜐
2  vs. Δ𝑇𝑚 

 
 

(b)  

𝐴𝑚 vs. Δ𝑇𝑚 

 
 

(c)  

𝐵𝑚 vs. Δ𝑇𝑚 

 
 

Figure 4.25: Modified full function fitting parameter results using the second order parameter estimates. 
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 Set 𝑚 = 𝑁, 𝜇 varies Set 𝑚 = 𝜇, 𝑚 varies with 𝜇 

(a)  

𝐶𝑚 vs. 

Δ𝐷𝑚 

  

(b)  

𝐷𝑚 vs. 

Δ𝑇𝑚 

  

Figure 4.26: Modified full function fitting parameter results using the second order parameters 
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Figure 4.27: Modified full function fitting parameter results using the second order parameter estimates. 

 

For the case of 𝑚 = 𝑁. 

 

4.3.4 Comparison Summary 

It has been shown in Sections 4.3.3.1 and 4.3.3.3 that using both 𝜀𝐼̅ and 𝜀𝐼̅𝐼 with 𝜀𝑚̅𝑜𝑑 still 

does not resolve the problems seen in Section 4.1. When 𝜀𝐼̅ is used, the fitting routine returns 

inconsistent 𝐷1 and 𝐷2 values over all of range shrinking Δ𝑇𝑚. Figure 4.19 reveals that, for this 

range of temperatures for typical data, χ𝜐
2 vs Δ𝑇𝑚 does not stabilize at a constant value for any 

significant range of temperatures and that all values of χ𝜐
2 are much larger than using 𝜀3̅/2. 

When 𝜀𝐼̅𝐼 is used, the fitting routine returns 𝐷1 and 𝐷2 values that initially agree with each 

other for the first few data points. However, over those few data points, 𝐷 does not go to a 

constant value. Figure 4.26b reveals that, when range shrinking Δ𝑇𝑚 beyond those few highest 

data points, the values of 𝐷1 and 𝐷2 diverge with 𝐷1 constant at a value of one with large standard 

errors. The most telling fault of using 𝜀𝐼̅𝐼  is that, from Figure 4.25a, the χ𝜐
2  is two orders of 

magnitude larger than using 𝜀3̅/2, and one order of magnitude larger than using 𝜀𝐼̅. 
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From Section 4.3.3.2, 𝜀3̅/2 is the best compromise for all data sets studied where Δ𝑇𝜇 

equals Δ𝑇𝑚. Figure 4.22a reveals a χ𝜐
2 that barely changes (relative Figures 4.19a and 4.25a). The 

parameter estimates minimally changes (again relative to the other two cases 𝜀𝐼̅ and 𝜀𝐼̅𝐼). Over 

the entire range shrinking Δ𝑇𝑚, the consistency check that 𝐷1 equals 𝐷2 holds. Most importantly, 

for the case of Δ𝑇𝜇 = Δ𝑇𝑚  (column (b) of Figure 4.11), 𝐷  is constant over the entire range 

shrinking Δ𝑇𝑚. Paramter 𝐷 for 6CB is between 0.50 and 0.60. Table 4.3 below shows the results 

of the heirarchical model when Δ𝑇𝑚 is held fixed at Δ𝑇𝑁, but Δ𝑇𝜇 is varied. Table 4.4 shows the 

results when Δ𝑇𝜇 = Δ𝑇𝑚. In both cases (that is, Tables 4.3 and 4.4), the 𝐷 = 1 extremum shows 

up when 𝜀𝐼̅ and 𝜀𝐼̅𝐼 are used with 𝜀𝑚̅𝑜𝑑. However, the use of 𝜀3̅/2 does not have that extremum 

appearing. 
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Table 4.3: Fitting results using Equations 4.7 applied to the 6CB sample data with m = N. 

Selection 

Criterion for m § 
𝜇 † 𝑚 𝑇∗ (K) 𝐴 𝐵 𝐶 𝐷1

‡ 𝐷2
‡‡ 𝜒𝜐,m

2  

(a) Range Shrinking 𝜇: 𝜀𝐼̅        

All Data 64 64 (300.99 ± 0.02) 5.91 ± 0.03 12.2 ± 4 1.5 ± 4 1.0 ± 3 0.88 ± 2 365 

𝜒𝜐
2 60 64 (300.60 ± 0.03) 6.11 ± 0.03 12.3 ± 100 1.7 ± 100 1.0 ± 60 0.89 ± 60 291 

𝜒𝜐
2 56 64 (300.51 ± 0.04) 6.16 ± 0.03 12.4 ± 60 1.7 ± 60 1.0 ± 30 0.89 ± 30 275 

SDV 53 64 (300.53 ± 0.04) 6.14 ± 0.03 12.3 ± 100 1.7 ± 100 1.0 ± 70 0.89 ± 60 280 

All Data 64 64 [[300.33]] 6.03 ± 0.03 12.3 ± 3 1.7 ± 3 1.0 ± 2 0.89 ± 2 405 

𝜒𝜐
2 60 64 [[300.33]] 6.17 ± 0.03 12.4 ± 100 1.8 ± 100 1.0 ± 60 0.89 ± 50 297 

𝜒𝜐
2 56 64 [[300.33]] 6.21 ± 0.03 12.4 ± 10 1.8 ± 10 1.0 ± 7 0.89 ± 6 272 

SDV 53 64 [[300.33]] 6.21 ± 0.03 12.4 ± 200 1.8 ± 200 1.0 ± 100 0.89 ± 100 269 

(b) Range Shrinking: ε̅3/2 
 

      

All Data 64 64 (300.15 ± 0.03) 6.49 ± 0.01 11.791 ± 0.006 1.255 ± 0.006 0.524 ± 0.003 0.522 ± 0.004 19.4 

𝜒𝜐
2 60 64 (299.69 ± 0.05) 6.49 ± 0.01 11.771 ± 0.005 1.274 ± 0.005 0.488 ± 0.003 0.484 ± 0.004 21.3 

𝜒𝜐
2 58 64 (299.72 ± 0.05) 6.49 ± 0.01 11.772 ± 0.005 1.273 ± 0.005 0.490 ± 0.003 0.486 ± 0.005 21.2 

SDV 55 64 (299.83 ± 0.05) 6.49 ± 0.01 11.780 ± 0.005 1.271 ± 0.006 0.500 ± 0.004 0.496 ± 0.005 20.6 

All Data 64 64 [[300.33]] 6.46 ± 0.01 11.774 ± 0.006 1.225 ± 0.006 0.527 ± 0.002 0.525 ± 0.003 19.3 

𝜒𝜐
2 60 64 [[300.33]] 6.40 ± 0.01 11.726 ± 0.005 1.180 ± 0.006 0.501 ± 0.002 0.498 ± 0.002 19.2 

𝜒𝜐
2 54 64 [[300.33]] 6.48 ± 0.01 11.789 ± 0.006 1.240 ± 0.007 0.535 ± 0.002 0.533 ± 0.003 19.3 

SDV 55 64 [[300.33]] 6.46 ± 0.01 11.774 ± 0.006 1.225 ± 0.006 0.527 ± 0.002 0.525 ± 0.003 19.3 

(c) Range Shrinking: ε̅𝐼𝐼 
 

      

All Data 64 64 (299.20 ± 0.09) 6.321 ± 0.009 11.660 ± 0.003 1.220 ± 0.004 0.409 ± 0.006 0.405 ± 0.008 21.1 

𝜒𝜐
2 60 64 (300.47 ± 0.06) 6.73 ± 0.03 12.6 ± 70 2.1 ± 70 1.0 ± 40 0.98 ± 40 38.1 

𝜒𝜐
2 61 64 (300.24 ± 0.07) 6.76 ± 0.02 12.09 ± 0.02 1.54 ± 0.02 0.68 ± 0.01 0.68 ± 0.01 21.6 

SDV 55 64 (300.86 ± 0.05) 6.02 ± 0.03 12.2 ± 20 1.6 ± 20 1.0 ± 10 0.91 ± 10 308 

All Data 64 64 [[300.33]] 6.42 ± 0.01 11.742 ± 0.006 1.195 ± 0.006 0.510 ± 0.003 0.508 ± 0.003 19.2 

𝜒𝜐
2 60 64 [[300.33]] 6.87 ± 0.03 12.7 ± 500 2.2 ± 500 1.0 ± 200 0.99 ± 200 26.4 

𝜒𝜐
2 55 64 [[300.33]] 6.69 ± 0.03 12.6 ± 10 2.1 ± 10 1.0 ± 5 0.97 ± 5 55.1 

SDV 55 64 [[300.33]] 6.69 ± 0.03 12.6 ± 10 2.1 ± 10 1.0 ± 5 0.97 ± 5 55.1 

§: the number of fitting points 

†: the number of fitting points from the critical fit table 

‡, ‡‡: calculated values from Equations 4.6a and 4.6b 

(    ): values taken from the critical fit table 

[[ ]]: fixed, literature from Zink et. al. 48 
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Table 4.4: Fitting results using Equations 4.7 applied to the 6CB sample data with m = μ. 

Selection 

Criterion for m § 
𝜇 † 𝑚 𝑇∗ (K) 𝐴 𝐵 𝐶 𝐷1

‡ 𝐷2
‡‡ χυ,m

2  

(a) Range Shrinking: 𝜀𝐼̅        

All Data 64 64 (300.99 ± 0.02) 5.91 ± 0.03 12.2 ± 200 1.5 ± 200 1.0 ± 100 0.89 ± 100 365 

𝜒𝜐
2 60 60 (300.60 ± 0.03) 6.08 ± 0.04 12.3 ± 8 1.7 ± 8 1.0 ± 5 0.90 ± 4 263 

𝜒𝜐
2 56 56 (300.51 ± 0.04) 6.07 ± 0.06 12.4 ± 40 1.8 ± 40 1.0 ± 20 0.90 ± 20 169 

SDV 53 53 (300.53 ± 0.04) 6.01 ± 0.08 12.4 ± 20 1.8 ± 20 1.0 ± 10 0.91 ± 10 115 

All Data 64 64 [[300.33]] 6.03 ± 0.03 12.3 ± 4 1.7 ± 4 1.0 ± 2 0.88 ± 2 405 

𝜒𝜐
2 60 60 [[300.33]] 6.14 ± 0.04 12.4 ± 4 1.8 ± 4 1.0 ± 2 0.89 ± 2 274 

𝜒𝜐
2 56 56 [[300.33]] 6.12 ± 0.06 12.4 ± 20 1.8 ± 20 1.0 ± 9 0.91 ± 8 174 

SDV 53 53 [[300.33]] 6.08 ± 0.08 12.4 ± 100 1.8 ± 100 1.0 ± 70 0.91 ± 160 120 

(b) Range Shrinking: 𝜀3̅/2 
 

      

All Data 64 64 (300.15 ± 0.03) 6.49 ± 0.01 11.791 ± 0.006 1.255 ± 0.006 0.524 ± 0.003 0.522 ± 0.004 19.4 

𝜒𝜐
2 60 60 (299.69 ± 0.05) 6.77 ± 0.02 11.901 ± 0.009 1.409 ± 0.009 0.534 ± 0.004 0.533 ± 0.005 5.56 

𝜒𝜐
2 58 58 (299.72 ± 0.05) 6.78 ± 0.02 11.907 ± 0.01 1.41 ± 0.01 0.538 ± 0.005 0.537 ± 0.006 5.69 

SDV 55 55 (299.83 ± 0.05) 6.75 ± 0.03 11.903 ± 0.01 1.40 ± 0.01 0.545 ± 0.006 0.544 ± 0.008 5.70 

All Data 64 64 [[300.33]] 6.46 ± 0.01 11.774 ± 0.006 1.225 ± 0.006 0.527 ± 0.002 0.525 ± 0.003 19.3 

𝜒𝜐
2 60 60 [[300.33]] 6.63 ± 0.02 11.837 ± 0.009 1.294 ± 0.009 0.546 ± 0.003 0.545 ± 0.004 8.39 

𝜒𝜐
2 54 54 [[300.33]] 6.58 ± 0.03 11.85 ± 0.02 1.30 ± 0.02 0.558 ± 0.005 0.559 ± 0.007 6.82 

SDV 55 55 [[300.33]] 6.60 ± 0.03 11.849 ± 0.01 1.30 ± 0.01 0.557 ± 0.005 0.557 ± 0.006 7.25 

I Range Shrinking: 𝜀𝐼̅𝐼 
 

      

All Data 64 64 (299.20 ± 0.09) 6.321 ± 0.009 11.660 ± 0.003 1.220 ± 0.004 0.409 ± 0.006 0.405 ± 0.008 21.1 

𝜒𝜐
2 60 60 (300.47 ± 0.06) 6.73 ± 0.03 12.6 ± 100 2.1 ± 100 1.0 ± 70 0.98 ± 70 38.1 

𝜒𝜐
2 61 61 (300.24 ± 0.07) 6.76 ± 0.02 12.09 ± 0.02 1.54 ± 0.02 0.68 ± 0.02 0.68 ± 0.01 21.6 

SDV 55 55 (300.86 ± 0.05) 6.02 ± 0.03 12.2 ± 100 1.6 ± 100 1.0 ± 80 0.91 ± 70 308 

All Data 64 64 [[300.33]] 6.42 ± 0.01 11.742 ± 0.006 1.195 ± 0.006 0.510 ± 0.003 0.508 ± 0.003 19.2 

𝜒𝜐
2 60 60 [[300.33]] 6.88 ± 0.04 12.7 ± 900 2.2 ± 900 1.0 ± 400 0.99 ± 400 20.1 

𝜒𝜐
2 55 55 [[300.33]] 6.66 ± 0.07 12.6 ± 200 2.1 ± 200 1.0 ± 90 0.97 ± 80 33.3 

SDV 55 55 [[300.33]] 6.66 ± 0.07 12.6 ± 200 2.1 ± 200 1.0 ± 90 0.97 ± 80 33.3 

§: the number of fitting points 

†: the number of fitting points from the critical fit table 

‡, ‡‡: calculated values from Equations 4.6a and 4.6b 

 (    ): values taken from the critical fit table 

[[ ]]: fixed, literature from Zink et. al. 48 
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4.4 General Theme: The Hierarchical Method Applied to All Data Sets 

The problems encountered with 𝜀𝑓̅𝑢𝑙𝑙 are resolved by using the method outlined in Section 

4.3. The most robust approach to the hierarchical model outlined in Figure 4.18 is to first use the 

𝜀3̅/2 expansion to estimate the critical parameters 𝛼, 𝛽, 𝛾, and 𝑇∗. Range shrinking by Δ𝑇𝜇 is used 

to ensure that the fit is in a region of parameter stability. The parameter results of 𝛼 and 𝑇∗ at a 

chosen 𝜇 are then fed into 𝜀𝑚̅𝑜𝑑. The modified full fit is range shrunk by the same amount as 𝜀3̅/2 

such that Δ𝑇𝜇 = Δ𝑇𝑚. Estimates are returned for parameters 𝐴, 𝐵, and 𝐶. The consistency check 

from Equation 4.8 is then applied by calculating 𝐷1 and 𝐷2. The results for a typical sample are 

seen in column (b) of both Figures 4.22 and 4.23 along with numerical results in Table 4.4b. The 

parameter estimates are constant after range shrinking by an amount based on χ𝜐
2 (see column (b) 

of Figure 4.22a). The standard errors are reasonable. The SDV plots are also used as a guide in 

range shrinking; however, their relevance lies within Sections 4.1 and 4.2. 

Section 4.4 is organized thusly. First, summary tables are shown with information about 

each sample, the chosen critical fits for each sample, and the chosen modified fit results for each 

sample. Second, selected plots are shown and discussed to assess if the results are reasonable. 

4.4.1 Summary of Result Tables 

The outlined heirarchical model is applied to 22 data sets, obtained from two groups. 

Fifteen of the data sets have the isotropic to nematic phase transitions for which the theory outlined 

in Chapter 2 is developed for. Six data sets have smectogenic to isotropic phase transitions, which 

still have nematic ordering. One of the data sets has an isotroipc to cholesteric transition. As 

mentioned in Chapter 1, the cholesteric phase is a slightly chiral variant of the nematic phase. 

Table 4.5 outlines some relevant metadata concerning these data sets. 

From critical exponents, Rzoska et. al. used an empirical function to fit their data 40, 
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𝜀𝑅̅𝑧𝑜𝑠𝑘𝑎 = −𝛼𝑥 + 𝛽 + 𝛾′(𝑥𝜑), 

where 𝜑 came out to be one-half, to within a margin of error, irrespective of the sample. The model 

discussed in this chapter has an expansion that ends up with a similar form given by Equation 4.5b: 

𝜀3̅/2 = −𝛼𝑥 + 𝛽 +
𝜋

2
𝛾 (𝑥

1

2 + 𝑥
3

2). 

As shown in Section 4.2 and then through Section 4.3, the 𝑥
3

2 term is necessary in order to obtain 

a self consistent model given by Equations 4.7 and 4.8. However, the 𝑥2  term seems to 

overparameterize the model. The chosen critical expansions for all 22 samples are shown in Table 

4.6. 

A change of variables is made using the critical relationship for parameter 𝐷, Equation 

4.6a. Prior to fitting 𝜀𝑚̅𝑜𝑑, 𝜀3̅/2 gives parameters 𝛼, 𝛽, 𝛾, and 𝑇∗. By using these, 𝜀𝑚̅𝑜𝑑 is reduced 

to fitting only three parameters. The chosen fit results for all samples are seen in Table 4.7. 

Figures 4.6 and 4.7 display the magnitudes and uncertainties in a slightly modified format 

from Sections 4.1 through 4.3: 𝑝± 𝛿𝑝 ± ∆𝑝. A given parameter magnitude 𝑝 represents the chosen 

value on range shrinking Δ𝑇𝜇 or Δ𝑇𝑚. The subscripted 𝛿𝑝 represents the associated standard error 

reported by the fitting routine where the fitting routine takes into account 𝜎𝑒𝑟𝑟𝑜𝑟 reported in the far 

right column of Table 4.5. The subscripted ∆𝑝 represents the spread in possible values of a given 

parameter 𝑝 on range shrinking. As an example, Table 4.2b shows when 𝑇∗ is a fixed parameter. 

Exluding all data used, three sets of fitting results are reported for range shrinking: based on the 

first most reasonable 𝜒𝜐
2, based on the second most reasonable 𝜒𝜐

2, and based on single deletion 

variance (SDV). The spread looks at the standard deviation of a given parameter estimate over the 

aforementioned three values. 
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Table 4.5: Information about each sample and select metadata concerning the corresponding dielectric data sets. 

Sample + Frequency 

Transition 

Type From 

Isotropic 

Molar 

Mass 

(g/mol) 

N ∆𝑇𝑁(K) 𝑇𝐼𝑀(K) ∆εN 𝜀𝐼𝑀 

Estimated Spread 

in ε̅, 
σerror

‡‡ 

(a) Thoen 𝑛CB Series        

5CB at 1 kHz N 249.35 32 109 308.57 1.963 11.312 0.003 

6CB at 1 kHz N 263.38 64 58.0 301.70 0.7117 10.7361 0.0009 

7CB at 1 kHz N 277.40 33 92.1 315.79 1.531 9.962 0.002 

8CB at 1 kHz N 291.43 36 89.2 315.02 1.234 9.584 0.001 

9CB at 1 kHz N 305.46 34 56.6 323.27 0.7175 9.0169 0.0005 

10CB at 1 kHz Sm 319.48 39 39.4 324.11 0.4335 8.7485 0.0003 

11CB at 1 kHz Sm 333.51 36 38.2 330.49 0.3850 8.5346 0.0003 

12CB at 1 kHz Sm 347.54 38 58.4 331.61 0.8456 8.1393 0.002 

(b) Rzoska 𝑛CB Series     
 

  

4CB at 100 kHz N 235.32 78 47.5 290.56 0.5170 11.2230 0.0005 

5CB at 10 kHz N 249.35 51 24.6 308.59 0.1695 10.8883 0.0003 

6CB at 10 kHz N 263.38 48 96.0 302.34 1.973 10.507 0.001 

8CB at 100 kHz N 291.43 42 50.4 313.37 0.5310 10.5600 0.0004 

9CB at 10 kHz N 305.46 40 34.3 323.01 0.3140 10.4680 0.0009 

12CB at 10 kHz Sm 347.54 50 34.9 331.12 0.4019 9.8003 0.0003 

(c) Rzoska 𝑛OCB Series     
 

  

6OCB at 10 kHz N 279.38 28 21.1 349.30 0.1040 11.5520 0.0005 

7OCB at 10 kHz N 293.40 52 43.6 346.70 0.2070 10.0490 0.0003 

8OCB at 10 kHz N 307.43 53 32.5 352.80 0.2230 10.4410 0.0006 

(d) Rzoska:Miscellaneous     
 

  

5CN at 10 kHz N 283.45 40 11.4 325.57 0.09190 8.7992 0.0002 

HCPP at 100 kHz N 355.48 61 44.0 325.00 0.5340 18.2400 0.0006 

9BT at 10 kHz Sm 337.52 22 36.8 339.95 0.2091 6.7536 0.0002 

10BT at 10 kHz Sm 351.55 29 39.2 339.20 0.2849 6.7087 0.0002 

5*CB at 1 kHz Ch 249.35 29 55.7 252.62 1.108 12.790 0.005 

‡: Calculated molar mass of materials. 

‡‡: Calculated spread in permittivity data 𝜀. The single deletion variance test was used to estimate the average weight for a given 

data set. Note that this value is, in most cases, an order of magnitude larger than the last decimal. For Thoen et. al., the last decimal 

was the fourth. 
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Table 4.6: The chosen critical fit parameter estimates for each sample studied. 

Sample + Frequency 𝜇 ∆𝑇𝜇(K) 𝑇∗ (K) 𝛼 𝛽 𝛾 𝜒𝜐
2 

(a) Thoen 𝑛CB Series       

5CB at 1 kHz 23 37.9 305.8 ± 0.4 ± 0.6 14.0 ± 0.6 ± 1 11.02 ± 0.03 ± 0.05 2.7 ± 0.2 ± 0.3 0.322 

6CB at 1 kHz 60 49.8 299.69 ± 0.05 ± 0.07 13.12 ± 0.06 ± 0.1 10.491 ± 0.004 ± 0.007 2.65 ± 0.02 ± 0.04 6.13 

7CB at 1 kHz 22 38.9 311.1 ± 0.4 ± 2 17.3 ± 0.6 ± 3 9.47 ± 0.04 ± 0.2 3.9 ± 0.2 ± 1 2.04 

8CB at 1 kHz 31 59.4 312.54 ± 0.07 ± 0.5 16.7 ± 0.1 ± 1 9.190 ± 0.008 ± 0.06 3.81 ± 0.04 ± 0.4 12.8 

9CB at 1 kHz 26 28.0 320.84 ± 0.05 ± 0.1 16.4 ± 0.1 ± 0.3 8.662 ± 0.006 ± 0.01 3.49 ± 0.04 ± 0.08 3.96 

10CB at 1 kHz 32 23.2 321.25 ± 0.05 ± 0.06 14.83 ± 0.09 ± 0.1 8.446 ± 0.004 ± 0.006 2.91 ± 0.03 ± 0.03 4.47 

11CB at 1 kHz 28 17.3 326.6 ± 0.1 ± 0.2 14.2 ± 0.2 ± 0.3 8.220 ± 0.01 ± 0.01 2.79 ± 0.07 ± 0.09 1.20 

12CB at 1 kHz 32 40.3 327.6 ± 0.4 ± 0.07 12.4 ± 0.4 ± 0.09 7.93 ± 0.02 ± 0.004 2.0 ± 0.1 ± 0.03 0.372 

(b) Rzoska 𝑛CB Series   
 

   

4CB at 100 kHz 60 22.6 289.41 ± 0.06 ± 0.3 7.74 ± 0.06 ± 0.4 11.140 ± 0.002 ± 0.01 1.15 ± 0.02 ± 0.1 28.2 

5CB at 10 kHz 51 24.7 307.57 ± 0.02 ± 0.05 9.54 ± 0.03 ± 0.2 10.771 ± 0.001 ± 0.005 1.652 ± 0.008 ± 0.04 19.3 

6CB at 10 kHz 43 58.4 299.80 ± 0.07 ± 0.2 18.9 ± 0.1 ± 0.4 10.092 ± 0.008 ± 0.03 4.04 ± 0.04 ± 0.1 18.0 

8CB at 100 kHz 41 41.1 310.87 ± 0.02 ± 0.1 17.01 ± 0.05 ± 0.3 10.146 ± 0.003 ± 0.02 3.91 ± 0.01 ± 0.1 11.0 

9CB at 10 kHz 32 24.2 321.05 ± 0.07 ± 0.02 17.8 ± 0.2 ± 0.07 10.11 ± 0.01 ± 0.003 3.81 ± 0.06 ± 0.02 4.28 

12CB at 10 kHz 44 26.8 325.6 ± 0.1 ± 0.6 16.1 ± 0.1 ± 0.8 9.404 ± 0.008 ± 0.05 3.21 ± 0.04 ± 0.3 36.5 

(c) Rzoska 𝑛OCB Series   
 

   

6OCB at 10 kHz 24 13.1 348.17 ± 0.07 ± 0.2 11.1 ± 0.3 ± 1 11.402 ± 0.007 ± 0.03 2.05 ± 0.05 ± 0.2 12.3 

7OCB at 10 kHz 52 43.6 345.07 ± 0.02 ± 0.08 11.02 ± 0.03 ± 0.2 9.825 ± 0.001 ± 0.008 2.522 ± 0.008 ± 0.05 38.2 

8OCB at 10 kHz 50 23.6 351.21 ± 0.03 ± 0.03 17.0 ± 0.1 ± 0.2 10.137 ± 0.005 ± 0.005 3.65 ± 0.03 ± 0.04 15.9 

(d) Rzoska:Miscellaneous   
 

   

5CN at 10 kHz 40 11.4 323.83 ± 0.06 ± 0.1 10.7 ± 0.1 ± 0.3 8.698 ± 0.003 ± 0.007 1.38 ± 0.03 ± 0.06 1.18 

HCPP at 100 kHz 60 39.7 323.94 ± 0.01 ± 0.05 17.91 ± 0.04 ± 0.3 17.969 ± 0.002 ± 0.009 3.71 ± 0.01 ± 0.06 12.8 

9BT at 10 kHz 22 36.8 326.2 ± 0.6 ± 1 9.9 ± 0.3 ± 0.8 6.37 ± 0.02 ± 0.07 2.4 ± 0.1 ± 0.3 15.5 

10BT at 10 kHz 29 39.2 329.4 ± 0.3 ± 0.9 9.6 ± 0.1 ± 0.6 6.418 ± 0.009 ± 0.04 2.07 ± 0.04 ± 0.2 8.33 

5*CB at 1 kHz 23 43.66 249.3 ± 0.4 ± 0.9 24.0 ± 0.9 ± 3 12.07 ± 0.07 ± 0.2 5.7 ± 0.3 ± 0.9 11.1 
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Table 4.7: The chosen modified full fit parameter results for each sample studied such that ΔTm = ΔTμ. 

Name and Frequency A 𝐵 𝐶 𝐷1
‡ 𝐷2

‡‡ 𝜒𝜐
2 

(a) Thoen 𝑛CB Series      

5CB at 1 kHz 7.4 ± 0.1 ± 0.4 12.50 ± 0.08 ± 0.1 1.47 ± 0.08 ± 0.2 0.54 ± 0.04 ± 0.01 0.54 ± 0.05 ± 0.01 0.332 

6CB at 1 kHz 6.77 ± 0.02 ± 0.02 11.901 ± 0.009 ± 0.003 1.409 ± 0.009 ± 0.007 0.534 ± 0.004 ± 0.005 0.533 ± 0.005 ± 0.006 5.56 

7CB at 1 kHz 7.95 ± 0.09 ± 0.4 11.55 ± 0.05 ± 0.2 2.08 ± 0.05 ± 0.4 0.54 ± 0.02 ± 0.02 0.53 ± 0.03 ± 0.02 1.83 

8CB at 1 kHz 7.46 ± 0.02 ± 0.3 11.19 ± 0.01 ± 0.08 1.99 ± 0.01 ± 0.1 0.525 ± 0.005 ± 0.02 0.524 ± 0.006 ± 0.02 12.1 

9CB at 1 kHz 8.18 ± 0.05 ± 0.2 10.58 ± 0.02 ± 0.06 1.91 ± 0.02 ± 0.07 0.549 ± 0.007 ± 0.008 0.549 ± 0.009 ± 0.008 3.83 

10CB at 1 kHz 7.96 ± 0.03 ± 0.06 10.05 ± 0.02 ± 0.02 1.60 ± 0.02 ± 0.03 0.552 ± 0.006 ± 0.002 0.552 ± 0.008 ± 0.003 4.35 

11CB at 1 kHz 7.64 ± 0.07 ± 0.2 9.77 ± 0.04 ± 0.05 1.55 ± 0.04 ± 0.06 0.56 ± 0.02 ± 0.004 0.56 ± 0.02 ± 0.004 1.16 

12CB at 1 kHz 7.49 ± 0.08 ± 0.06 9.03 ± 0.04 ± 0.02 1.09 ± 0.04 ± 0.03 0.54 ± 0.03 ± 0.006 0.54 ± 0.04 ± 0.006 0.362 

(b) Rzoska 𝑛CB Series      

4CB at 100 kHz 5.03 ± 0.03 ± 0.2 11.77 ± 0.02 ± 0.05 0.63 ± 0.02 ± 0.07 0.551 ± 0.01 ± 0.008 0.550 ± 0.02 ± 0.008 27.7 

5CB at 10 kHz 5.63 ± 0.02 ± 0.09 11.682 ± 0.009 ± 0.02 0.91 ± 0.01 ± 0.02 0.552 ± 0.005 ± 0.002 0.551 ± 0.006 ± 0.002 18.9 

6CB at 10 kHz 9.10 ± 0.02 ± 0.03 12.20 ± 0.01 ± 0.008 2.1 ± 0.01 ± 0.03 0.524 ± 0.004 ± 0.009 0.522 ± 0.006 ± 0.009 16.7 

8CB at 100 kHz 7.69 ± 0.01 ± 0.06 12.249 ± 0.007 ± 0.008 2.102 ± 0.007 ± 0.02 0.539 ± 0.002 ± 0.007 0.539 ± 0.003 ± 0.007 9.67 

9CB at 10 kHz 8.82 ± 0.09 ± 0.03 12.22 ± 0.05 ± 0.009 2.11 ± 0.05 ± 0.01 0.56 ± 0.01 ± 0.002 0.55 ± 0.02 ± 0.003 4.11 

12CB at 10 kHz 8.43 ± 0.02 ± 0.2 11.14 ± 0.01 ± 0.1 1.74 ± 0.01 ± 0.1 0.543 ± 0.007 ± 0.002 0.542 ± 0.009 ± 0.002 35.8 

(c) Rzoska 𝑛OCB Series      

6OCB at 10 kHz 6.4 ± 0.2 ± 0.5 12.6 ± 0.1 ± 0.09 1.2 ± 0.1 ± 0.1 0.58 ± 0.05 ± 0.0009 0.58 ± 0.06 ± 0.0009 11.7 

7OCB at 10 kHz 5.01 ± 0.01 ± 0.1 11.193 ± 0.005 ± 0.04 1.368 ± 0.006 ± 0.05 0.543 ± 0.002 ± 0.007 0.543 ± 0.003 ± 0.008 37.9 

8OCB at 10 kHz 8.47 ± 0.07 ± 0.05 12.20 ± 0.04 ± 0.01 2.07 ± 0.04 ± 0.02 0.566 ± 0.009 ± 0.005 0.566 ± 0.01 ± 0.005 15.5 

(d) Rzoska:Miscellaneous      

5CN at 10 kHz 7.47 ± 0.09 ± 0.2 9.48 ± 0.04 ± 0.03 0.78 ± 0.04 ± 0.04 0.57 ± 0.03 ± 0.005 0.57 ± 0.03 ± 0.005 1.15 

HCPP at 100 kHz 9.13 ± 0.02 ± 0.09 20.01 ± 0.01 ± 0.01 2.04 ± 0.01 ± 0.02 0.549 ± 0.003 ± 0.008 0.549 ± 0.004 ± 0.008 12.1 

9BT at 10 kHz 4.06 ± 0.02 ± 0.1 7.599 ± 0.009 ± 0.08 1.228 ± 0.009 ± 0.1 0.52 ± 0.02 ± 0.003 0.52 ± 0.02 ± 0.003 15.2 

10BT at 10 kHz 4.63 ± 0.01 ± 0.1 7.502 ± 0.006 ± 0.05 1.081 ± 0.006 ± 0.09 0.526 ± 0.009 ± 0.007 0.52 ± 0.01 ± 0.007 8.56 

5*CB at 1 kHz 10.2 ± 0.1 ± 0.7 14.99 ± 0.07 ± 0.3 2.91 ± 0.08 ± 0.5 0.52 ± 0.02 ± 0.008 0.52 ± 0.03 ± 0.008 10.5 

‡, ‡‡: calculated values from Equations 4.6a and 4.6b 

  



www.manaraa.com

114 

 

 

Table 4.8: Miscellaneous comparisons of each sample studied. 

Sample + Frequency ∆𝑇𝑁(K) ∆𝑇𝜇(K) ∆𝑥𝑁 ∆𝑥𝜇 (𝑇𝐼𝑀 − 𝑇∗) (K) 
(𝑇𝐼𝑀 − 𝑇𝑍𝐼𝑁𝐾

∗ ) 
(K) 

𝜀𝑃𝑒𝑎𝑘 − 𝜀𝐼𝑀 𝜀𝑃𝑒𝑎𝑘 − 𝛽 

(a) Thoen 𝑛CB Series        

5CB at 1 kHz 109 37.9 0.366 ± 0.003 0.133 ± 0.003 2.8 ± 0.7 [[1.40]] 0.063 0.35 ± 0.06 

6CB at 1 kHz 58.0 49.8 0.2002 ± 0.0003 0.1715 ± 0.0003 2.01 ± 0.08 [[1.37]] 0.1006 0.346 ± 0.007 

7CB at 1 kHz 92.1 38.9 0.311 ± 0.009 0.140 ± 0.007 5 ± 2 [[1.25]] 0.082 0.6 ± 0.2 

8CB at 1 kHz 89.2 59.4 0.293 ± 0.002 0.198 ± 0.002 2.5 ± 0.5 [[1.02]] 0.182 0.58 ± 0.06 

9CB at 1 kHz 56.6 28.0 0.1841 ± 0.0004 0.0948 ± 0.0004 2.4 ± 0.1 [[1.50]] 0.1307 0.49 ± 0.01 

10CB at 1 kHz 39.4 23.2 0.1316 ± 0.0003 0.0810 ± 0.0002 2.87 ± 0.07 [[4.25]] 0.0669 0.370 ± 0.007 

11CB at 1 kHz 38.2 17.3 0.1288 ± 0.0008 0.0650 ± 0.0007 3.9 ± 0.2 [[5.30]] 0.0417 0.36 ± 0.01 

12CB at 1 kHz 58.4 40.3 0.190 ± 0.001 0.135 ± 0.001 4.0 ± 0.3 [[7.70]] 0.008 0.22 ± 0.01 

(b) Rzoska 𝑛CB Series    
 

   

4CB at 100 kHz 47.5 22.6 0.1641 ± 0.0002 0.0820 ± 0.0002 1.15 ± 0.06 - 0.0260 0.11 ± 0.01 

5CB at 10 kHz 24.6 24.6 0.0834 ± 0.0002 0.0834 ± 0.0002 1.02 ± 0.05 [[1.40]] 0.0681 0.185 ± 0.005 

6CB at 10 kHz 96.0 58.4 0.3285 ± 0.0009 0.2032 ± 0.0008 2.5 ± 0.2 [[1.37]] 0.149 0.56 ± 0.03 

8CB at 100 kHz 50.4 41.1 0.1702 ± 0.0004 0.1401 ± 0.0004 2.5 ± 0.1 [[1.02]] 0.1810 0.60 ± 0.02 

9CB at 10 kHz 34.3 24.2 0.1129 ± 0.0002 0.0814 ± 0.0002 1.96 ± 0.05 [[1.50]] 0.1780 0.538 ± 0.008 

12CB at 10 kHz 34.9 26.8 0.124 ± 0.002 0.0992 ± 0.0002 5.5 ± 0.6 [[7.70]] 0.0209 0.42 ± 0.05 

(c) Rzoska 𝑛OCB Series    
 

   

6OCB at 10 kHz 21.1 13.1 0.0639 ± 0.0006 0.0408 ± 0.0006 1.1 ± 0.2 - 0.0940 0.24 ± 0.03 

7OCB at 10 kHz 43.6 43.6 0.1310 ± 0.0003 0.1310 ± 0.0003 1.63 ± 0.08 - 0.1610 0.385 ± 0.008 

8OCB at 10 kHz 32.5 23.6 0.0970 ± 0.0001 0.0718 ± 0.0001 1.60 ± 0.04 - 0.2130 0.517 ± 0.006 

(d) Rzoska:Miscellaneous        

5CN at 10 kHz 11.4 11.4 0.0405 ± 0.0004 0.0405 ± 0.0004 1.7 ± 0.1 - 0.0105 0.112 ± 0.008 

HCPP at 100 kHz 44.0 39.7 0.1390 ± 0.0002 0.1257 ± 0.0002 1.06 ± 0.05 - 0.2300 0.502 ± 0.009 

9BT at 10 kHz 36.8 36.8 0.155 ± 0.004 0.1549 ± 0.0004 14 ± 1 - 0.0017 0.39 ± 0.07 

10BT at 10 kHz 39.2 39.2 0.149 ± 0.003 0.149 ± 0.003 10 ± 1 - 0.0018 0.29 ± 0.04 

5*CB at 1 kHz 55.7 43.7 0.237 ± 0.005 0.189 ± 0.005 3 ± 1 - 0.191 0.9 ± 0.2 

[[ ]]: fixed, literature from Zink et. al. 48 
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4.4.2 Selected Plots for the nCB Series 

It is preferable to look at one homologue group in order to clearly compare the fitting 

parameter results. For this, the nCB homologue series is chosen as the majority of the samples 

studied used were of this series. The model (Equations 4.2, 4.5b, and 4.7) is fit for the nCB series 

as it has the isotropic-nematic phase transition through 9CB. Starting with 8CB, a smectic phase 

thermally forms below the nematic phase. The nematic phase becomes more thermally narrow and 

disappears by 10CB. Applying the model through 12CB allows for a look at what happens to the 

fitting parameters as the nematic phase disappears.  

Two groups performed dielectric measurements for the nCB series. Part (a) of Tables 4.5, 

4.6, and 4.7 are for Thoen et. al. (the Leuven group) 28, 37, 51. The samples of 5CB through 12CB 

were looked at. Part (b) of Tables 4.5, 4.6, and 4.7 are for Rzoska et. al. (the Warsaw group) 38-46, 

52. The samples of 4, 5, 6, 8, 9, and 12CB were investigated. The results of Tables 4.5 through 4.7, 

parts (a) and (b) are plotted in this section. 

Each group’s data has its own advantage. The Leuven group systematically looked at the 

nCB series 28, 37, 51. The numerical data were obtained directly from that group, taken at the same 

frequency and conditions, and measured at the same precision. The Warsaw group has a diverse 

selection of measuring frequencies and conditions 38-46, 52. The data were obtained by graphically 

extracting the data points from published plots, leading difficulty in consistent precision. 

The critical temperature 𝑇∗ is plotted in Figure 4.28 for the homologous series nCB. As the 

number of carbons are added to the chain length 𝑛, the critical temperature, and the estimated 

transition temperature 𝑇𝐼𝑀 increase almost linearly for both groups. Between 4CB and 9CB, the 

phase transition from isotropic is nematic. In Figure 4.28a, there appears to be a subtle odd-even 

effect until 10CB is reached. 
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(a)  Results from applying the heirarchical model to the Leuven group’s data 37. 

 

 

(b)  Results from applying the heirarchical model to the Warsaw group’s data 38-46, 52. 

 

 

 

Figure 4.28: Selected results for the temperature parameter estimates of the nCB series. 

 

 The values of 𝑇𝐼𝑀 are taken directly from the data (green squares). 

 The critical temperature 𝑇∗ is a fitting parameter from using the three-halves order expansion (see Equation 4.5b). 
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Figures 4.29 and 4.30 show the slope and intercept parameter estimates, respectively. Both 

the critical slope 𝛼 and the background slope 𝐴 in Figure 4.29a have a subtle odd even effect 

between 5CB and 9CB. Beyond 9CB, the trend versus carbon chain length appears to become 

more linearly decreasing. The Warsaw group slopes in Figure 4.29b have no obvious trend, due in 

part to being measured at different frequencies. 

Figure 4.30 shows the permittivity 𝜀𝐼𝑀 at the transition temperature, the intercept 𝛽 from 

the three-halves expansion (see Equation 4.5b), and the background intercept 𝐵 (see Equation 4.7). 

In part (a) (the Leuven group), all three linearly decrease with an increase in the carbon chain 

length. This consistency hints at consistent measuring. This is reasonable as 5CB is relatively polar 

while the addition of non-polar carbons dilutes this polarity. 

Figure 4.30b (the Warsaw group) also shows a linear decrease in 𝜀𝐼𝑀  with increasing 

carbon chain length n. However, the application of the model to their data by way of parameter 

results 𝛽 and 𝐵 hints at different conditions among each sample. The difference is the variation in 

frequency for all n. 

The background parameter results 𝛼 , 𝐴 , 𝛽 , and 𝐵  should be compared at the same 

frequency. The Leuven group’s results are ideal for this requirement as each sample is measured 

at the same frequency. For the Warsaw group, 5CB, 6CB, and 12CB were all measured at 10 kHz. 

The experimental goals of the Warsaw data were not necessarily focused on the nCB series. The 

goals ranged from super-cooling, to the mixing of two non-chiral molecules with different 

polarities, and to looking at lower temperature phases. An advantage of the Warsaw group’s results 

is that they looked at quasi-critical effects leading to the empirical equation discussed in Sections 

4.2.2 and 4.4.1. 
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(a)  Results from applying the heirarchical model to the Leuven group’s data 37. 

 

 

(b)  Results from applying the heirarchical model to the Warsaw group’s data 38-46, 52 . 

 

 

 

Figure 4.29: Selected results for the slope parameter estimates of the nCB series. 

 

 Parameter 𝛼 is a fitting parameter from the three-halves order expansion (see Equation 4.5b). 

 Parameter A is the slope parameter in Equation 4.7. in the values of 𝑇𝐼𝑀  are taken directly from the data (green 

squares). 
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(a)  Results from applying the heirarchical model to the Leuven group’s data 37. 

 

 

(b)  Results from applying the heirarchical model to the Warsaw group’s data 38-46, 52. 

 

 

 

Figure 4.30: Selected results for the intercept parameter estimates of the nCB series. 

 

 Parameter 𝛽 is a fitting parameter from the three-halves order expansion (see Equation 4.5b). 

 Parameter B is the slope parameter in Equation 4.7. The values of 𝜀𝐼𝑀 (the green squares) are taken directly from the 

data. 
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Figure 4.31 shows the magnitude of the pretransitional curvatures represented by 𝛾 for the 

critical fits (see Equation 4.5b) and 𝐶 for the modified full fits (see Equations 4.2 and 4.7). From 

the Leuven group (part (a) of Figure 4.31), both 𝛾 and 𝐶 have a steep increase around carbon chain 

length 𝑛 = 7. Both 𝛾 and 𝐶 gradually decrease with increasing 𝑛. Although it is unclear what is 

happening, it is known that a smectic phase forms at a temperature below the nematic phase for 

8CB. The 9CB sample has a much narrower nematic phase between the isotropic and smectic 

phases.  

Figure 4.32a shows the calculated parameter 𝐷  (see Equation 4.6a) across the entire 

homologous series nCB for both the Leuven and Warsaw group’s data. Irrespective of frequency 

used, parameter 𝐷  remains relatively constant with reasonable standard errors. Additionally, 

parameter 𝐷 is near the expected order of magnitude 48, 50, 53. 

Figure 4.32b shows the parameter estimates for calculated parameter 𝑔 which was first 

shown in Equation 4.4c and Figure 4.8. Parameter 𝛾  times 𝑔  competes directly with the 

background slope 𝐴. To within estimated error, 𝑔 is around a value of 2.35 which corresponds to 

the quadratic contribution of the pretransitional curvature being near zero. 

A positive value of parameter 𝑓 allows for a single, positive solution to 𝐷 (see Figure 4.8). 

Figure 4.32c shows the calculated parameter 𝑓 (see Equation 4.4f) for the nCB series where 𝑓 is 

mostly positive and small. 

In summary, the entire nCB series returns a reasonable, positive estimate of 𝐷. Referring 

back to Figure 4.8, 𝑔 remains above its minimum allowed value while parameter 𝑓 is small and 

positive. A near zero value of 𝑓 justifies using the three-halves expansion 𝜀3̅/2 instead of the full 

second order expansion 𝜀𝐼̅𝐼. The consistency check of Equation 4.8 is satisfied. The model is now 

self-consistent.  
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(a)  Critical fit parameter 𝛾 from the three-halves order expansion (see Equation 4.5b). 

 

 

(b)  Modified fit parameter 𝐶 from Equation 4.7. 

 

 

 

Figure 4.31: Selected estimates of the magnitude parameters 𝛾 and 𝐶 of the pretransitional curvature for the nCB series. 

 

Both groups are plotted together: 

 Leuven data (Thoen et. al.) 37 

 Warsaw data (Rzoska et. al.) 38-46, 52 

  



www.manaraa.com

122 

 

 

(a)  
Calculated parameter 𝐷  (see Equation 4.6a). The green, solid line represents the value of 𝐷  when 

parameter 𝑓 is zero.  

 

 

(b)  Calculated parameter 𝑔 (see Equation 4.4c). The product 𝑔𝛾 competes with the background slope 𝐴. 

 

 

(c)  Calculated parameter 𝑓 (see Equation 4.4f). This parameter contributes to the pretransitional curvature. 

 

 

 

Figure 4.32: Calculated parameter estimates from the heirarchical model in Equations 4.5b and 4.7 for the nCB series. 

 

 Both groups are plotted together: 

 Leuven data (Thoen et. al.) 37 

 Warsaw data (Rzoska et. al.) 38-46, 52 
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CHAPTER 5 THE EFFECTS OF VARYING CHIRALITY ON THE DIELECTRIC 

RESPONSE OF CHOLESTERIC LIQUID CRYSTALS 

Dielectric properties of achiral nematic liquid crystals have been studied extensively. With 

various experimental techniques (such as dynamic light scattering, heat capacity, and dielectric 

measurements), pretransitional anomalies in many polar nematics are observed on both sides of 

the nematic-isotropic phase transition 14, 26, 28, 38-46. Chapter 4 dealt with the achiral case and applied 

a generalized theory to the temperature dependence of the dielectric permittivity. 

Few studies have looked at the effects of chirality in a chiral nematic system 23, 54. One 

dielectric study by Leys et. al. has investigated varying of chirality 23. That study looked at 

mixtures of an achiral nematic 5CB (4-pentyl-cyanobiphenyl) and the chiral variant CB15 (4-(2-

methylbutyl)-cyanobiphenyl) 23. The structures of both molecules are shown in Figure 5.1.  

 

 

 

 

(a) 5CB 55  (b) CB15 56 

Figure 5.1: The molecules studied in the chirality study by Leys, Glorieux, Wübberhorst, and Thoen 23. These chemical structure 

images are from the Royal Society of Chemistry’s online database 55, 56. 

 

Both molecules have the same molecular weight.  
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Both 5CB and CB15 possess a prominent longitudinal dipole moment and have 

pretransitional curvature in the isotropic phase as the mesogenic phase is approached. The 5CB-

CB15 system starts with zero chirality and increases in chirality with the addition of CB15. The 

static dielectric permittivity was looked at for anomalous pretransitional behavior on the isotropic 

side of the phase transition.  

The data from the study above can be seen in Figure 5.2. In addition to the data for the pure 

5CB and CB15 samples, four different mixture ratios of those two samples are shown 23. The real 

part 𝜀′ of the permittivity is normalized with respect to the value of the permittivity 𝜀𝐼𝑀
′  at the 

estimated isotropic to mesogenic phase transition temperature 𝑇𝐼𝑀. The temperature differences 

are with respect to the transition temperature  𝑇𝐼𝑀 . Data below zero along the ordinate are 

interpreted as not contributing to the pretransitional anomaly (i.e., pretransitional curvature). Any 

data above zero along the ordinate is interpreted as contributing to the pretransitional curvature. 

 

Figure 5.2: Results from the paper by Leys et. al. 23  

 

This is the temperature dependence of the pretransitional effects in the heating runs of 5CB with CB15 23. The cooling runs were 

stated to be similar. 
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As discussed in Chapter 2, one possible contribution to this curvature is the formation of 

anti-parallel dimers as the mesophase is approached from the isotropic side of the transition. It is 

of interest to see if chirality also contributes to the pre-mesophase curvature. From Figure 5.2, it 

can be seen that both 5CB (the least chiral of the two molecules) and CB15 (the most chiral of the 

two molecules) both have strong pretransitional curvature. With the addition of chirality, the 

pretransitional curvature appears to go away around the 50% CB15 mixture. Beyond the 50% 

CB15 mixture, the pretransitional curvature reappears as pure CB15 is approached. From those 

results, the role of chirality is ambiguous due to the relative change of the permittivity 𝜀′ not being 

a monotonic function of chirality. 

The mixtures under investigation in this dissertation are both chiral, oppositely handed, 

and only one has a prominent longitudinal dipole moment (refer back to Section 3.3 for a 

discussion of the samples under investigation). In contrast, the 5CB-CB15 system has only one of 

the compounds being chiral with both have similar longitudinal dipole moments. It is a goal of this 

chapter to look at the dielectric response for a highly chiral system and from there vary the chirality. 

Three experimental approaches are presented in this chapter: the temperature dependence of the 

dielectric measurements at constant frequency, the frequency dependence of the dielectric 

measurements at constant temperature, and cross-polarized microscopic observations with no 

applied field. Cross-polarized microscopy is used for visual confirmation of the textures of the 

phases that are present and for further interpretation of the dielectric measurements. 

This chapter will first focus on one of the mixtures (the 12% cholesteryl chloride mixture) 

as an example for common features seen in the dielectric data of all the mixtures measured. From 

light scattering experiments, the 12% cholesteryl chloride mixture was expected to exhibit blue 
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phases 57, 58. Both the temperature and frequency dependence will be discussed for this example 

sample. 

Following the discussion of the representative sample, all of the mixture ratios will be 

discussed. The normalization of the permittivity data will be discussed and the estimated 

discontinuities at the phase transition will be addressed. The discontinuities are of particular 

interest due to the blue phases showing up at higher chirality (lower percentage of cholesteryl 

chloride). The discontinuities are indicative of an increase or decrease in chirality. 

For sake of clarifying the discussion of the temperature dependence, the mixtures will be 

roughly divided into four composition ranges based on similar curvature at low frequency. For 

each range, the corresponding relaxation frequencies will be discussed in addition to the 

temperature dependence of the relative permittivity. 

In discussing the COC-CC system, two main things were unexpected that motivated 

covering a broader range of mixtures than intended (the intent was 0% through 25% CC). First, 

the phase transitions were monotropic for percentages below 35% cholesteryl chloride. The blue 

phases were seen, dielectrically, on cooling. On heating, the cholesteric to isotropic phase 

transition was observed. Secondly, there was a significant difference between measurements done 

at 10 kHz and 100 kHz. This last point is indicative of a measurement taken near a relaxation peak. 

5.1 The Chirality Scale Defined 

As mentioned in Section 3.3, the chirality scale is made by mixing two oppositely handed 

molecules: cholesteryl oleyl carbonate (COC) and cholesteryl chloride (CC). The prepared 

compositions and the resulting uncertainties in mixing can be seen in Table 5.1. The left column 

of Table 5.1 lists the actual measurements used in both plotting and calculations. The right column 
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of Table 5.1 shows what each percentage will be referred to as in the plot legends and subsequent 

tables.  

Both molecules are highly chiral and have blue phases present between the cholesteric and 

isotropic phases. Consequently, it is also of interest to see how the presence of the blue phases 

appear over composition. This same system (COC mixed with CC) has been studied with optical 

observations 59. A phase diagram as a function of composition was found; the results presented 

will be compared to that study. We are aware of two other dielectric studies just on COC which 

identify at least one blue phase 54, 60. 

 

5.2 The Dielectric Response and Microscopic Observations for a Model Mixture: 12% by 

Weight Cholesteryl Chloride 

The blue phases are expected to appear at high chirality between the isotropic phase and 

the cholesteric phase. It is of interest to see how the discontinuity of the dielectric permittivity at 

the phase transition changes with the disappearance of the blue phases. One of the samples, pure 

cholesteryl oleyl carbonate, is reported to have at least one blue phase, i.e., BP III 54, 57, 58, 60. 

However, cholesteryl oleyl carbonate scatters light strongly only in the ultraviolet, making it 

Table 5.1: Compositions studied. Percent composition of cholesteryl chloride mixed with cholesteryl oleyl carbonate. 

 Actual Value (%) Referred to As (%)  

 1.503 ± 0.003 1.5  

 3.05 ± 0.04 3  

 6.081 ± 0.004 6  

 11.996 ± 0.005 12  

 15.996 ± 0.003 16  

 20.036 ± 0.003 20  

 25.000 ± 0.003 25  

 29.970 ± 0.003 30  

 35.009 ± 0.003 35  

 39.975 ± 0.004 40  

 44.977 ± 0.005 45  

 49.966 ± 0.005 50  

 54.997 ± 0.004 55  

 60.000 ± 0.004 60  
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difficult to visually observe with optical cross-polarized microscopy and to compare with the 

dielectric results 57, 59. From Koistinen et. al., cholesteryl chloride was added in order to shift the 

scattering wavelength of blue phase III into the visible 57. The 12% cholesteryl chloride mixture 

with cholesteryl oleyl carbonate was used. That paper focused only on blue phase III 57. 

As will be seen later in this chapter, the dielectric data presented at 10 kHz for the 1.5% 

through 40% cholesteryl chloride samples are qualitatively similar. From cross-polarized 

microscopy measurements they are expected to have blue phases 57, 59. On cooling in the 

mesophase(s), the real part of the data slopes upward, reaching a maximum and then further 

curving downward. If dielectric measurements are able to detect any of the blue phases (which 

themselves are isotropic), then they would show up to within a few degrees of the isotropic to 

mesogenic phase transition. When blue phases were observed on cooling for the COC-CC series, 

a pattern was observed in the 10 kHz dielectric data. The blue phases showed up between the above 

mentioned maximum on cooling and the isotropic to mesogenic phase transition 𝑇𝐼𝑀. For example, 

as will be seen, the 12% cholesteryl chloride’s peak on cooling for the dielectric measurements 

was around 5.4 K below 𝑇𝐼𝑀 . From my own microscopic observations, two blue phases were 

definitively observed. The transition to the first one appeared through 0.4 K below 𝑇𝐼𝑀 with an 

increase in wavelength from yellow and stayed constant at red for an additional 0.6 K. The 

transition to the second blue phase lasted for a further 0.8 K with a decrease in wavelength from 

red and then remained a constant green for about 1 K. Below this, the color started to change blue 

and the cholesteric phase began to form. The cholesteric phase was observed to have fully formed 

between 4.7 K and 5.1 K below 𝑇𝐼𝑀. 

The 12% cholesteryl chloride sample is a model for this region. Not only does it have at 

least two blue phases and probably three (from both my own observations and the results reported 
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by Koistinen et. al.), but also, as will be seen later in this chapter, the blue phases strongly scatter 

light in the visible range. This will allow for direct comparison of the phase sequence between 

cross-polarized microscopic observations and the curves seen in the dielectric data. From this it 

will be seen how well the blue phases are dielectrically distinguished from the cholesteric and 

isotropic phases. 

The blue phases are not expected to be present from the 45% by weight cholesteryl chloride 

and above 59. From cross-polarized microscopic measurements, I saw a cholesteric phase form 

directly below the isotropic beyond 30%. In this dissertation, the 35% through 60% cholesteryl 

chloride samples did not show obvious evidence of blue phases being present. These samples were 

studied so as to understand what the transition looks like without the presence of a blue phase – 

that is, the lower chirality limit. 

5.2.1 Temperature Dependence for the Dielectric Response of 12% CC 

Each mixture was cycled through heating and cooling runs at constant frequencies of 10 

kHz and 100 kHz separately. At least three cycles were measured at each constant frequency. 

When this study began, there was a problem with noise in the apparatus at frequencies much below 

100 kHz. After both grounding and shielding issues were resolved, a 10 kHz driving signal was 

successfully used with reliable results. It was at that point when the unexpected differences were 

observed between the two frequencies. This section will present first the magnitude of the results 

and then normalized data. 

5.2.1.1 Magnitude of Response 

Representative runs for the 12% cholesteryl chloride sample can be seen in Figure 5.3. It 

is seen that there is a significant difference in the dielectric results between the two probing 

frequencies. Because of this difference, both frequencies were separately used for all samples. As 
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justified later in this chapter, the 10 kHz data are found to lie in the range of frequencies that are 

typically preferred for phase transition studies: avoiding both ionic conduction and any influence 

from relaxation processes (the plateau frequency region). The 100 kHz data show a well-defined 

location of the isotropic to mesogenic phase transition on both heating and cooling. 

Repeatable hysteresis in the isotropic to mesogenic phase transition temperature was 

observed between heating and cooling. This was an artifact caused by the procedure used. For each 

cycle, the temperature was held constant at either end of the thermal cycle for an hour to ensure 

measurements were repeatable. Heating or cooling then began. The discrepancy in transition 

between heating and cooling was around 2 °C and was independent of frequency and composition. 

Because it was independent of both frequency and composition and dependent on heating versus 

cooling, it can be attributed to a heating or cooling lag in the experimental setup as opposed to any 

real effect in the samples. This does not affect the analysis since temperature differences were the 

primary interest. 
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Figure 5.3: These are representative runs for the magnitude of the dielectric data collected on heating and cooling as well as at 

10 kHz and then at 100 kHz.  

 

Since this is an AC measurement, both the (a) real part ε′and (b) imaginary part ε” are shown. Typically the imaginary part ε” is 
not shown as a function of temperature in the literature as it is preferred to be close to zero. 
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For the real part of the permittivity at 10 kHz as seen in Figure 5.3a, the phase transition 

appears to have a hysteresis in the curvature of the permittivity. On heating from room temperature, 

the permittivity drops down followed by a large discontinuity at the mesogenic to isotropic phase 

transition. In the isotropic phase, the heating and cooling runs are almost identical. On cooling 

from the isotropic phase into the mesophase, there appears to be a negligible discontinuity in the 

transition. On further cooling, the real part has a kink in the data followed by further sloping 

upward until it reaches a peak. It continues to slope downward with decreasing temperature until 

it tapers off. It is important to note that these dielectric measurements are on thick, randomly 

aligned samples. When measuring in the mesogenic phases it is typical to use either a magnetic 

field or surface treatment of the electrodes to induce a particular alignment. At a given temperature, 

a sample would have a different behavior in the dielectric permittivity depending on whether the 

alignment was parallel or perpendicular to the applied, measuring field. In a randomly oriented 

mesophase, the measured value may or may not be the average between the perpendicular and 

parallel alignment. 

For the real part of the permittivity at 100 kHz, the phase transition still appears to have a 

hysteresis in the curvature of the permittivity versus temperature. On heating, there is a slight 

convex curvature near the isotropic to mesogenic phase transition. The cooling run differs in that 

the curvature appears concave. In addition, the discontinuity at the isotropic to mesogenic phase 

transition is much larger on heating than on cooling. As will be seen later in Section 5.2.2, the 100 

kHz measurement is very close to the relaxation frequency of the mixture in the mesophases. Near 

the relaxation frequency, there is an increase in the number of molecules that are unable to 

sufficiently respond to an applied AC field compared to a frequency that is much lower than the 
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relaxation frequency. Within the frequency range of the relaxation peak, the ability of the 

molecules to form anti-parallel dimers most rapidly changes. 

It is difficult to determine exactly where the phase transition is for the real part of the 10 

kHz data on cooling. Because of the thermal lag in the experimental setup, the mesogenic to 

isotropic transition on heating cannot be used for cooling. There is no evidence that this phase 

transition is significantly dependent on the measuring frequency. On heating, both the 10 and 100 

kHz data had phase transitions that were in agreement. Similarly, the 100 kHz data on cooling 

served as a way of determining where the phase transition for each sample was at 10 kHz. Also, 

the imaginary part of the permittivity, in Figure 5.3b, also showed a discontinuity at 10 kHz. This 

also served as a way of determining the phase transition temperature as the discontinuity in the 

real part of the permittivity data was not always obvious. 

5.2.1.2 Normalization of Response 

The magnitudes of the data vary widely with composition. Per composition the imaginary 

part 𝜀𝐼𝑀
”  differs by an order of magnitude between the 10 kHz and 100 kHz run, so a normalization 

needs to be performed in order to allow for comparison. The relative changes are also of primary 

interest to this dissertation. Shifting each data set by their respective estimated transition 

temperatures 𝑇𝐼𝑀 and the corresponding values of the real and imaginary parts of the permittivity, 

𝜀𝐼𝑀
′  and 𝜀𝐼𝑀

” , allow for a common reference. For the temperature dependence, the estimated 

isotropic to mesogenic phase transition temperature 𝑇𝐼𝑀 was subtracted out. This eliminated the 

importance of the thermal lag between heating and cooling runs. Each cooling and heating, 

measured at both 10 kHz and 100 kHz, had its own estimated transition temperature 𝑇𝐼𝑀 along 

with the respective real and imaginary parts of the permittivity, 𝜀𝐼𝑀
′  and 𝜀𝐼𝑀

” . The values for the 

representative runs shown in Figure 5.3 can be seen in Table 5.2a. The precision over repeated 
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runs was not as precise as a single run. The repeatability of measurements TIM, 𝜀𝐼𝑀
′ , and 𝜀′𝐼𝑀

′  is 

shown in Table 5.2b. The qualitative shape of each run compared to another run was relatively 

precise and reproducible. 

Most of the cooling and heating runs were performed at least three times each, from which 

the representative data in Figure 5.3 were taken. Each run had its own 𝑇𝐼𝑀, 𝜀𝐼𝑀
′  and 𝜀𝐼𝑀

” . In order 

to obtain an estimate of the reproducibility of the magnitudes of the data, the means of 𝑇𝐼𝑀, 𝜀𝐼𝑀
′  

and 𝜀𝐼𝑀
”  were calculated with one standard deviation from the mean used as an estimate of the 

reproducibility of the magnitudes. Since  𝑇𝐼𝑀  appears to be frequency independent, the 𝑇𝐼𝑀 for 

both frequencies was averaged as one. The averages over all runs can be seen in Table 5.2b. There 

is a contribution to the estimate of reproducibility due to the data being recorded at approximately 

one-third of a degree centigrade increments. The normalization of the data shown in Figure 5.3 is 

seen in Figure 5.4. 

Table 5.2: These are the values used to normalize the data for the 12% cholesteryl chloride sample. 

 

These values are from the lowest temperature data point measured in the isotropic phase.  

(a) A single, representative run with high precision. 

 ΔTramp Frequency TIM (°C) 𝜀𝐼𝑀
′  𝜀𝐼𝑀

”  (10-3)  

 Cooling 10 kHz 39.41 2.6823 3.7108  

  100 kHz 39.60 2.6732 30.451  

 Heating 10 kHz 41.04 2.6791 3.7437  

  100 kHz 41.35 2.6698 30.345  

(b) The mean of all runs. A lower accuracy in the mean of the magnitudes means that, while the relative pattern of the data is 

highly accurate, the magnitude is not so much. The uncertainties in the temperature are well within the average temperature 

spacing of each data point (one-third of a degree centigrade). 

 ΔTramp Frequency TIM (°C) 𝜀𝐼𝑀
′

 𝜀𝐼𝑀
”  (10-3)  

 Cooling 10 kHz 39.5 ± 0.1 2.681 ± 0.002 3.4 ± 0.2  

  100 kHz  2.6726 ± 0.0006 30.7 ± 0.6  

 Heating 10 kHz 41.2 ± 0.2 2.679 ± 0.003 3.8 ± 0.2  

  100 kHz  2.6702 ± 0.0005 30.6 ± 0.7  
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Figure 5.4: These are representative runs that have been normalized according to Table 5.2 on both heating and cooling. 

 

Since this is an AC measurement, both the (a) real part ε′ and (b) imaginary part ε” are shown. For measurements in the static 

frequency range, the imaginary part ε” is expected to be small or near zero. 
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Although this normalization does not change the observations noted about Figure 5.3, it 

will allow the comparison of all samples later in this chapter. As will be seen later, due to the 

addition of cholesteryl chloride (which has a prominent longitudinal dipole in comparison to pure 

cholesteryl oleyl chloride), the net dipole moment and permittivity of the system goes up. This 

makes a direct comparison of the magnitudes plotted on the same graph impractical. It will be 

useful to compare and plot the relative changes of each sample. 

5.2.2 Frequency Dependence for the Dielectric Response of 12% CC 

The theory behind dielectric relaxation as a function of frequency is well developed (see 

Section 2.2) 29-33. The real and imaginary isothermal parts can be extracted out and plotted 

separately versus frequency. Figure 5.5 shows all of the isothermal frequency sweeps recorded for 

the 12% cholesteryl chloride sample. The dashed lines are fits to the data. The Cole-Cole formula 

in Equation 2.9 is used for fitting. These fits will be discussed in the following sections. 

The dielectric response is characterized for two main frequency ranges. The first is the low 

frequency static region where the imaginary part 𝜀” is near zero (i.e., dissipation is minimized) and 

the relaxation process fully contributes to the real part  𝜀′ of the permittivity. The other range is 

near the relaxation peak where dissipative forces contribute more to 𝜀” and less to the real part  𝜀′ . 

The static region was discussed in the previous section as a function of temperature. Each phase is 

expected to have a different relaxation frequency. When choosing a low frequency within the static 

region it is important to consider how the relaxation frequency changes over the entire temperature 

range studied. Each temperature should have an equal contribution from the relaxation process. 

The real part of the permittivity 𝜀′  in Figure 5.5a is plotted such that the data at all 

temperatures could be plotted on the same graph. This is done by shifting the real data along the 

vertical axis by the resultant fitting parameter 𝜀∞. The parameter 𝜀∞ is the value of the permittivity 
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well above the relaxation peak. In this region the molecules have difficulty responding to the 

applied field. For the real part, the dielectric strength parameter ∆𝜒0 is the difference between 

static permittivity (i.e., the lower frequency plateau, constant permittivity region with a static value 

of 𝜀∞ − ∆𝜒0) and the high frequency permittivity 𝜀∞ (beyond the inflection point of the curve). 

The inflection point corresponds to where the relaxation frequency 𝑓𝑟 lies. Also note that at the 

lowest frequencies measured there is some bending upward and downward in the data. For the real 

part, this is only expected if another relaxation process is present or if there was parasitic 

inductance or conductance in the system. This lowest frequency region was not fitted for the real 

part as it was not of interest. There is an additional parameter 𝛼 that the real part depends on. 

However, the interpretation of 𝛼 is better understood in the context of a parametric plot. 

The imaginary part of the permittivity in Figure 5.5b is referred to as the dielectric loss. 

The data has four regions to note: low frequency ionic conduction, the static permittivity region 

where 𝜀” is minimized or zero, the relaxation process, and the higher frequency region where 

another relaxation process may exist. It is desired to avoid the low frequency ionic conduction. 

This is generally modeled by the term in Equation 3.8, 
𝑆

𝜔𝑛, where S is related to the zero frequency 

conductivity, 𝑛  is a fitting parameter frequently taken as one and 𝜔  is the angular frequency 

defined in Section 2.1. When the dielectric loss bends downward and becomes negative at low 

frequency, that can be associated with undesirable, low frequency induction. Above the ionic 

conduction region (where 𝜀” flattens out) corresponds to the static permittivity region mentioned 

for the real part. It is within this frequency range that it is ideal for constant frequency, temperature 

sweeps. The higher range corresponds to a relaxation process. The height of this peak is related to 

the fitting parameter ∆𝜒0 . The top of the peak corresponds to the relaxation frequency 𝑓𝑟 . At 

frequencies above this peak, it appears another relaxation process begins. However, the equipment 
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was limited to a maximum frequency of 1 MHz and was not able to sufficiently probe the higher 

frequency process. Cole and Cole first showed that, when a relaxation process is present, 

parametrically plotting of the dielectric data reveals semicircles of radius R– a geometric 

interpretation of the data results 30. While this eliminates an explicit dependence on frequency, it 

allows for three of the six fitting parameters to be well determined: the high frequency 

permittivity 𝜀∞, the dielectric strength  ∆𝜒0, and the depression angle related to the parameter 𝛼. 

From Equation 2.12a, as parameter  𝛼  is reduced from one, the semicircle shifts downward 

resulting in a reduction of the dielectric loss. From Equation 2.12b, as parameter 𝛼 is reduced from 

one, the radius of the semicircle increases, which depresses the dielectric loss peak. 

The Cole-Cole plots for the 12% cholesteryl chloride sample can be seen in Figure 5.6. The 

dashed lines are parametric fits to the frequency range of the data having the relaxation process. 

That is, only those data determined to be part of the relaxation process were selected for fitting per 

temperature. The real part of the data (i.e., the horizontal axis) is shifted by the center of each 

semicircle so that concentric semicircles can be seen: 𝜀∞ +
∆𝜒0

2
. 
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(a) 

            

 

(b) 

         

Figure 5.5: The explicit frequency dependence of the 12% CC mixture.  

 

Data were collected from 20 Hz to 1 MHz. The dashed lines represent the fits to the data. 

(a) The real part. So that the data could be plotted together, they are shifted by the high frequency limit fitting parameter 

ε∞.  

(b) The imaginary part. The frequency at a peak corresponds to a relaxation frequency  𝑓𝑟 . The low frequency tail 

corresponds to either ionic contributions (+) or inductive contributions (-). 
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Figure 5.6: Parametric plot of all isothermal data for the 12% CC mixture.  

 

Data were collected from 20 Hz to 1 MHz. The dashed lines represent the fits to the data such that only those data that seemed 

to be part of the relaxation process under investigation were used. As can be seen, there are higher frequency data points that 

appeared to be a part of another, higher frequency relaxation process. 

 

5.2.2.1 Parametric Fitting Results 

The fitting of relaxation data is mathematically analogous to the hierarchical model 

proposed in Section 4.3. In Section 4.3 a few parameters were obtained from an approximate model 

and then fed into the full model. This allowed for a reasonable approximation of all parameters. 
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For fitting a Cole-Cole relaxation process, it is useful to begin with a geometric 

interpretation: the semicircle introduced in Section 2.2.2. This eliminates an explicit dependence 

on frequency but also assumes no contributions from undesirable effects. When this is done, three 

of the six parameters of the model are determined: where the semicircle crosses the real axis 𝜀∞, 

the width of the semicircle ∆𝜒0, and by how much it is shifted along the imaginary axis 𝛼. The 

downward angle 𝜑 of this shift relates to 𝛼 by 𝜑 =
(1−𝛼)𝜋

2
. 

Table 5.3 shows the results of parametrically fitting the data at the various isotherms. In 

Figure 5.7, the high frequency permittivity 𝜀∞ shows a general increase in value as the temperature 

is reduced followed by a noticeable discontinuity around the phase transition. This plot shows the 

most reasonable of results. The parameter ∆𝜒0 is the dielectric strength or width of the relaxation 

process. Parametrically it is the width of the semi-circle along the real axis. It does not vary much 

and there is scatter as a function of temperature. This is evident by looking at the third column of 

Table 5.3. Parameter 𝛼, seen in the fourth column of Table 5.3 reveals a near Debye type behavior 

over most isotherms. That is, parametrically, a Debye relaxation process shows a semicircle that 

is not shifted along the imaginary axis, resulting in a depression angle 𝜑 = 0 with 𝛼 = 1. More 

isothermal data (i.e., measure more frequencies per temperature) are needed to confirm if both ∆𝜒0 

and 𝛼 indeed do not systematically vary as a function of temperature. The goal of the frequency 

dependence measurements is to find the relaxation frequency 𝑓𝑟 as a function of temperature to 

check whether constant frequency data are near this or not. 
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Table 5.3: The fitting results of the parametric fit shown in Figure 5.6. 

 

 High frequency permittivity ε∞ 

 The dielectric strength of the relaxation process ∆χ0 

 The depression angle α 

 Fixed Temperature (°C) ε∞ ∆χ0=ε∞ - εstatic 𝛼  

 23.50 ± 0.06 2.56666 ± 3*10
-5 0.12985 ± 4*10

-5 0.9238 ± 3*10
-4  

 30.00 ± 0.01 2.56289 ± 4*10
-5 0.11555 ± 4*10

-5 0.9382 ± 3*10
-4  

 40.00 ± 0.01 2.5571 ± 2*10
-4 0.1269 ± 2*10

-4 0.9302 ± 5*10
-4  

 42.00 ± 0.03 2.5547 ± 3*10
-4 0.1264 ± 3*10

-4 0.9406 ± 6*10
-4  

 43.50 ± 0.02 2.5556 ± 3*10
-4 0.1225 ± 3*10

-4 0.9498 ± 5*10
-4  

 50.00 ± 0.02 2.52287 ± 7*10
-5 0.14266 ± 7*10

-5 0.9414 ± 2*10
-4  

 60.00 ± 0.05 2.5157 ± 1*10
-4 0.1297 ± 1*10

-4 0.9594 ± 2*10
-4  

 70.0 ± 0.10 2.4930 ± 3*10
-4 0.1292 ± 3*10

-4 0.9198 ± 4*10
-4  

 80.00 ± 0.07 2.4850 ± 6*10
-4 0.1175 ± 6*10

-4 0.8856 ± 6*10
-4  
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Figure 5.7: The high frequency permittivity ε∞.  

 

The left side of the Cole-Cole parametric plot where the permittivity theoretically crosses the real axis. The dotted line is for a 

guide to the reader and is not an actual fit to the data. The error bars from Table 5.3 are plotted, however they are negligible for 

many of the points. 

 

5.2.2.2 Explicit Frequency Dependence Fitting Results 

Parametric fitting allows for the simultaneous fitting of the real part 𝜀′ and the imaginary 

part 𝜀” around a relaxation peak at frequency 𝑓𝑟. After parametrically fitting the data, the results 

are fed into the frequency dependent models for the real and imaginary parts. Doing this reduces 

the real part  𝜀′  versus frequency to being dependent on a single parameter: the relaxation 

frequency 𝑓𝑟. The results of both the parametric fit and the explicit frequency dependence of the 

real part 𝜀′ are then used in the fit of the imaginary part 𝜀”. This further reduces the model for the 



www.manaraa.com

144 

 

 

imaginary part  𝜀”  versus frequency as a two parameter model: the low frequency ionic 

conductivity 𝑆 and the exponent of the frequency dependence 𝑛 of that low frequency behavior. In 

order to model the relaxation peak alone, it is sufficient to only parametrically fit the data followed 

by fitting the real part 𝜀′ versus frequency. 

Table 5.4 shows the numerical results of the fits for the explicit frequency dependence. The 

relaxation frequency  𝑓𝑟  shows a dramatic increase in the estimated standard error as  𝑓𝑟 

approaches the measuring limits of the apparatus. The low frequency parameter 𝑆 is expected to 

represent the low frequency ionic conductivity of the sample if its sign is positive. However it is 

negative at many of the isothermal measurements, albeit small. This is typically associated with 

undesirable inductive behavior 34. In Figure 5.5b, the static permittivity region is sufficiently wide 

and flat over all isotherms. It can be concluded that any low frequency inductive (or conductive) 

behavior is not affecting the results in the static region – namely around the 10 kHz probing 

frequency. Except for those isotherms where the estimated relaxation frequency exceeds the 

measuring capabilities of the apparatus, the exponent 𝑛 of the low frequency behavior is close to 

a value of one at the discrete temperatures measured in figure 5.5 and 5.6. 

Figure 5.8 shows the relaxation frequency versus inverse temperature. It is seen that the 

lowest relaxation frequency is at 53 kHz with a ∆𝜒0 of 0.13. From Figure 5.5 this corresponds to 

10 kHz being on the tail end of the relaxation process and 1 kHz being sufficiently beyond the 

relaxation curve. At higher temperatures (to within 12 °C of the phase transition; see Figure 5.3), 

10 kHz is sufficiently low enough for the static permittivity measurements.  

The results of the relaxation frequency versus temperature, plotted in Figure 5.8, are 

necessary to assess whether or not the low frequency measurements were within the static 

permittivity regime. That is, it is important to know if the temperature ramping measurements were 
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in the static, plateau region of the dielectric permittivity and if the measurements were outside of 

the lowest frequency ionic conductivity region. 

The low frequency ionic conductivity 𝑆 and the low frequency index 𝑛 values are seen in 

Table 5.4, columns three and four. For many of the measurements, parameter 𝑆 was negative, 

meaning the imaginary part curved downward for low frequencies and probably had parasitic 

inductance. Looking back at Figure 5.6, the semicircles did not appear skewed; this means the 

undesirable low frequency behavior did not noticeably affect the relaxation curves. The fitting 

parameter 𝑛 is near a value of one except at the isotherms of 70 °C and 80 °C. From Figure 5.5b it 

is seen that the low frequency tail is small at these two temperatures. So the results of 𝑆 and 𝑛 are 

not as well determined at the higher temperatures. However, for the purposes of this dissertation, 

it is sufficient that this low frequency region is avoided, not necessarily fully characterized. Figure 

5.5b allows for a visualization of this. 

The exponent 𝛽 in Equation 3.8 is fixed at one for this analysis. It represents the high 

frequency (i.e.,  𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 >  𝑓𝑟) linearity in the parametric relationship between 𝜀”and 𝜀′. The use 

of 𝛽 ≠ 1 could not be justified due to a limited range of frequencies measured for 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 >  𝑓𝑟. 

Without a sufficient frequency range, it is impossible to distinguish between a single skewed peak 

(the case where 𝛽 ≠ 1) and two close peaks that are superimposed on each other (where both peaks 

have 𝛽 = 1). For most of the data sets, the maximum frequency measured 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  barely 

exceeded the fitted relaxation frequency 𝑓𝑟. 
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Table 5.4: These are the fitting results of the explicit frequency dependence of ε’ and ε”after performing the parametric fits on 

the data shown in Figure 5.6. 

 

 The parameter estimates for ε∞, ∆χ0, and α are shown in Table 5.3: 

 The relaxation frequency  fr 
 The low frequency conductivity S 

 The modification to the power of the low frequency dependence n 

 Fixed Temperature (°C) Relax fr (kHz) 
Conductivity S *10-3 

(kHz^n) 
Power n  

 23.50 ± 0.06 53 ± 1 10.28 ± 0.01 1.1119 ± 6*10
-4  

 30.00 ± 0.01 106± 2 -8.148 ± 0.009 1.1530 ± 6*10
-4  

 40.00 ± 0.01 332± 10 -8.860 ± 0.009 1.1622 ± 5*10
-4  

 42.00 ± 0.03 494± 30 -8.761 ± 0.009 1.1514 ± 6*10
-4  

 43.50 ± 0.02 555± 30 -7.178 ± 0.008 1.2260 ± 6*10
-4  

 50.00 ± 0.02 1139± 20 -3.649 ± 0.005 1.3166 ± 8*10
-4  

 60.00 ± 0.05 2060± 80 -1.743 ± 0.006 1.2772 ± 2*10
-4  

 70.0 ± 0.10 4431± 500 -0.43 ± 0.03 0.0498 ± 1*10
-4  

 80.00 ± 0.07 7033± 1000 6.282 ± 0.007 0.6165 ± 7*10
-4  
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Figure 5.8: The temperature dependence of the relaxation frequency fr for the 12% cholesteryl chloride mixture. 

 

Parametrically, it corresponds to the peak of the semicircle. This peak is where the dielectric loss ε” is maximum. The dotted 

line is for a visual guide to the reader and is not an actual fit to the data. Due to the limited number of data points, it is not 

obvious whether or not the three data points between 3.10 
1

Mk
 (49.4 °C) and 3.20 

1

Mk
 (39.4 °C) are another phase (such as a blue 

phase). The error bars from Table 5.4 are plotted, however they are negligible for many of the points. 

 

5.2.3 Microscopic Observations of the 12% CC Mixture 

Cross cross-polarized microscopy observations were performed in order to correlate the 

different characteristic regimes of the dielectric data to the textures associated with each phase for 

the corresponding temperature ranges. Although the dielectric and microscopic measurements 

were not performed simultaneously, the phase transitions were in reasonable agreement. For 

example, the dielectric measurements (using a thick sample) on cooling for the 12% mixture 
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clearly showed a transition from the isotropic phase to BPIII at (39.5 ± 0.1) °C. On heating, a 

cholesteric to isotropic phase transition was found to be at (41.2 ± 0.2) °C. For my microscopic 

observations (using a thin sample on cooling), an apparent isotropic phase transition to BPII was 

found to be around 40.9 °C. Using the Koistinen et. al. paper as a reference (which used a thick 

sample), this was probably the BPIII (an isotropic phase) to BPII transition which had a BPIII that 

extended over a 0.6 K range 57. Adding this range to my observed transition to BPII gives 41.5 °C. 

This compares well the dielectric measurement on cooling of 41.2 °C. A thick sample is needed 

for optical observations of BPIII. 

Table 5.5 outlines the cross-polarized microscopy results for the 12% cholesteryl chloride 

mixture. Figure 5.8 shows selected images corresponding to Table 5.5. For this sample, the blue 

phases I and II were seen only under reflectance on cooling. On cooling, from the isotropic phase 

yellow platelets appeared within 0.2 K below the phase transition. Platelets are a characteristic 

texture of blue phases I and II. This corresponds to the start of the transition from BPIII to BPII. 

By 0.3 K below the isotropic phase the color changed to orange and the platelets increased in 

number and size. By 0.6 K below the transition, the orange platelets turned a dark red. These red 

platelets remained until 1.1 K below the isotropic phase, corresponding to BPII (when present, 

BPII is always at a higher temperature than BPI). At 1.2 K below the phase transition a yellow 

haze associated with the cholesteric phase formed with some of the red platelets turning a patch 

work of yellow and orange. This corresponds to the start of the transition from BPII to BPI. By 

1.6 K below the isotropic phase, the red platelets changed mostly to yellow with the formation of 

a few green platelets. By 2.0 K below the isotropic phase all platelets were green, with some dark 

red patches at the periphery of the region with green platelets. The green platelets persisted until 

3.0 K below the isotropic phase, corresponding to BPI. The cholesteric phase started to take form 
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as the image turned blue at 4.5 K below the isotropic phase. During this temperature range, the 

cholesteric phase began to form and gradually start to dominate the image from 3.6 K below the 

isotropic phase until it fully occupied the view by 5.1 K below the phase transition.  

Firstly, my optical observations clearly showed the presence of BPII and BPI above the 

cholesteric phase. Since my microscope sample slide was too thin, BPIII was not definitively 

observed. However, from Koistinen et. al., BPIII is known to exist between the isotropic phase 

and BPII for the 12% mixture over a narrow temperature range 57. Recall from Section 1.1.2 that 

blue phases are cubic structures with diffuse Bragg peaks. Over the initial 0.7 K below the isotropic 

phase, the wavelength of the blue phase increased from yellow to red with decreasing temperature. 

This was followed by 0.6 K of the wavelength remaining constant at red. Then over an additional 

0.6 K, the wavelength decreased from red to green. With further decreasing of the temperature, it 

remained green for 1.4 K until changing to blue and the cholesteric phase. This increase in the 

wavelength and plateau in the red is probably blue phase II (a simple cubic) as it is near the 

isotropic phase. Blue phase I is a body-centered cubic that typically appears between blue phase II 

(or BPIII, if BPII is not present) at a higher temperature and the cholesteric phase at a lower 

temperature. The decrease in wavelength followed by a constant green is probably blue phase I. 

Heating began in the cholesteric phase. By it being a uniform blue color this means that it started 

off planar aligned. 

Secondly, from the dielectric measurements of the 12% cholesteryl chloride mixture at 10 

kHz on cooling (seen in Figures 5.3 and 5.4), for the first 5.4 K below the isotropic phase the real 

part of the dielectric permittivity slopes upward with decreasing temperature. Within this region, 

the blue phases are expected to show up. From the isotropic phase, there is a slight kink in the data 

at the transition followed by a slight change in the slope. It is this kink that corresponds to BP III. 
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It is about the width reported in Koistinen et. al. for BPIII. Beyond this kink, it appears that BP I 

and II are dielectrically indistinguishable from each other 57. Blue phases I and II are together 

dielectrically distinguishable from both the higher temperature isotropic phase and the lower 

temperature cholesteric phase. In order to better compare the temperature range of BPIII from 

dielectric measurements to Koistinen et. al., a higher density of data should be acquired for future 

work 57. As for the cross-polarized microscopy observations, the camera aperture automatically 

adjusted to sudden lighting adjustment. In order to observe blue phase III for the optical 

microscopy measurements (assuming it is in the optical range of the spectrum for the 12% 

cholesteryl chloride sample), using a different camera setup would be helpful. Also, from 

Koistinen et. al., it seems a thicker sample should be used 57. 

Table 5.5: Summary of cross-polarized microscopy observations for the 12% cholesteryl chloride mixture. 

 Temperature (°C) Observation Associated Phase  

 14.0 Texture associated with smectic. Smectic A  

 23.5 Uniform color, Blue; Planar alignment N*  

 40.9 Isotropic BPIII 57  

 40.8 Yellow platelets form BPII forming  

 40.7 Orange platelets form   

 40.6 to 39.9 Platelets turn Red, stay Red BPII  

 39.8 Parts turn Orange and Yellow BPI forming  

 39.4 Yellow and Orange   

 39.2 Green and Yellow   

 39.0 to 37.2 Turns Green, stays Green BPI  

 37.1 to 36.6 Green changes to Blue-Green N* Forming  

 36.5 Blue platelets with large cholesteric patches   

 35.9 Cholesteric fully formed N*  
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(a)  14.0 °C (b)  20.2 °C (c)  23.5 °C  (d)  40.5 °C 

    

(e)  41.0 °C  (f)  40.9 °C  (g)  40.8 °C  (h)  40.7 °C 

    

(i)  40.6 °C  (j)  40.5 °C  (k)  39.8 °C  (l)  39.8 °C 

    

(m)  39.6 °C  (n)  39.4 °C  (o)  39.2 °C  (p) 39.0 °C 

    

(q)  38.0 °C  (r)  37.6 °C  (s)  37.4 °C  (t)  37.1 °C 

    

(u)  36.8 °C  (v)  36.5 °C  (w)  36.2 °C  (x)  35.9 °C 

    

Figure 5.9: Optical cross-polarized microscopy images for the representative 12% cholesteryl chloride mixture. 

 

All images are captured under reflectance. Indices (a) and (b) are from a different run in which the sample was cooled below 

room temperature looking for a smectic phase. The dark circle is an air bubble. The white dots observed at 40.8 °C and above 

were present for all mixtures. The white dots did not show up when the crossed polarizers were removed. 
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5.3 The Dielectric Response and Microscopic Observations for All Investigated COC-CC 

Mixtures 

Mixtures of cholesteryl chloride with cholesteryl oleyl carbonate were made between 0% 

and 60% cholesteryl chloride. The mixtures were studied to see how the blue phases evolve as a 

function of composition. Blue phases are expected to be present between the 0% and 40% 

cholesteryl chloride mixtures 59. As such, the 12% mixture was looked at in the previous section 

as an example that includes dielectric features common to those mixtures having blue phases. The 

optical results from McKinnon et. al. of the isotropic to mesophase transition versus composition 

can be seen in Figure 5.10 59. Intermediate compositions of cholesteryl chloride with cholesteryl 

oleyl carbonate approach the low chirality limit where blue phases are not present. 

The dielectric measuring process and data acquisition for the heating and cooling runs were 

performed the same way as with the 12% cholesteryl chloride mixture discussed previously in both 

Sections 3.2 and 5.2. The only exception in data acquisition was for the number of data points 

collected every degree centigrade. The 3%, 6%, and 12% mixtures were the first samples to be 

dielectrically measured in this study – the data were recorded every third of a degree centigrade. 

Considering the error bars on the temperatures in Table 5.2b, it was an initial concern that 

recording more data points per temperature would result in noisy data. The 20% and 30% 

cholesteryl chloride mixtures were then measured – the data were recorded every fourth of a degree. 

It was realized that as composition was increased, the temperature range of the blue phases 

decreased. More data points per degree centigrade were necessary. The remaining mixtures, 

including a repeat of pure cholesteryl oleyl carbonate, were measured every fifth of a degree for 

the dielectric temperature cycling. 
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5.3.1 Normalization of the Temperature Dependence  

The same normalization procedure as with the 12% cholesteryl chloride composition was 

performed for all compositions. The normalization was done with respect to the isotropic to 

mesogenic phase transition. The transition temperature 𝑇𝐼𝑀  for each composition needed to be 

found for both heating and cooling run. The value of  𝑇𝐼𝑀 was subtracted out from all temperatures. 

The respective real and imaginary parts of the permittivity, 𝜀𝐼𝑀
′  and 𝜀𝐼𝑀

” , are then determined. The 

permittivity values were divided by their respective 𝜀𝐼𝑀
′  and 𝜀𝐼𝑀

”  values. 

 

Figure 5.10: Phase diagram from the paper by P. H. Keyes, A. J. Nicastro and E. M. McKinnon 59.  

 

This is the estimate of the phase transitions from optical measurements. When this paper was published, it was not yet well 

established that there was more than one blue phase. 
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5.3.1.1 The Isotropic to Mesogenic Phase Transition Temperature TIM 

The mean values for the estimated transition temperatures from the isotropic to mesogenic 

phase 𝑇𝐼𝑀 are shown for all compositions studied in Table 5.6. As mentioned earlier, each heating 

and cooling cycle was performed multiple times. The values reported are the averages over all runs 

with one standard deviation from the mean reported as the uncertainty. The uncertainty is a 

measure of the repeatability of the magnitudes; the precision of an individual run was high with 

the relative shapes being consistent. The values in Table 5.6 are plotted in Figure 5.11. 

Both heating and cooling run transition temperatures follow an approximately linear trend 

versus composition. A proportional increase in 𝑇𝐼𝑀 with the addition of cholesteryl chloride to 

cholesteryl oleyl carbonate is expected. That is, cholesteryl oleyl carbonate has a much lower 

isotropic to mesogenic phase transition than cholesteryl chloride. Pure cholesteryl oleyl carbonate 

has an isotropic transition temperature that is around 38 °C. As discussed in Section 3.3, cholesteryl 

chloride has a monotropic phase sequence, where the transition temperature  𝑇𝐼𝑀 on heating is at 

98 °C (crystal to isotropic) and on cooling is at 72 °C (isotropic to blue phase). The slopes of both 

the heating and cooling runs can are shown in Figure 5.11. 
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Table 5.6: The average estimated transition temperature TIM for the heating and cooling runs. 

 

The isotropic to mesogenic phase transition temperature did not appear to be dependent on the frequency. Each is a combined 

mean of the 10 kHz and 100 kHz runs. One standard deviation from this mean is reported as the uncertainty. The difference 

between the heating and cooling runs for all compositions was relatively constant: 𝑇𝐼𝑀
𝐻𝑒𝑎𝑡𝑖𝑛𝑔

− 𝑇𝐼𝑀
𝐶𝑜𝑜𝑙𝑖𝑛𝑔

= (1.9 ±  0.3) °C. 

 Composition (% CC)  𝑇𝐼𝑀 (°C) on Heating  𝑇𝐼𝑀 (°C) on Cooling  

 0 39.3 ± 0.1 37.4 ± 0.1  

 1.5 39.9 ± 0.1 37.9 ± 0.1  

 3 40.8 ± 0.4 39.2 ± 0.2  

 6 41.2 ± 0.3 39.3 ± 0.1  

 12 41.2 ± 0.2 39.5 ± 0.1  

 16 42.5 ± 0.2 40.8 ± 0.1  

 20 43.7 ± 0.1 41.8 ± 0.1  

 25 45.1 ± 0.1 43.07 ± 0.05  

 30 46.5 ± 0.2 44.4 ± 0.1  

 35 48.1 ± 0.1 45.9 ± 0.1  

 40 47.6 ± 0.1 45.97 ± 0.04  

 45 50.3 ± 0.1 47.8 ± 0.1  

 50 51.6 ± 0.1 49.6 ± 0.1  

 55 52.6 ± 0.5 50.1 ± 0.5  

 60 53.3 ± 0.1 51.6 ± 0.2  
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Figure 5.11: The average estimated transition temperatures TIM for the dielectric heating and cooling runs from Table 5.6 for all 

compositions.  

 

The error bars from Table 5.6 are included in the plot. They are relatively small for most mixtures. Both types of runs appear to 

be linear with some scatter. A linear fit was performed for each type of run (not graphically shown). The linear fitting results of 

both the heating and cooling runs as a function of composition are given:  

 

 Slope (
℃

%CC
) Intercept (℃) 

Heating 0.236 ± 0.002 39.3 ± 0.6 

Cooling 0.230 ± 0.002 37.5 ± 0.5 
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5.3.1.2 The Real Part ε’IM of the Permittivity at the Transition Temperature TIM 

As mentioned in Section 3.3, cholesteryl chloride has a significant longitudinal dipole 

moment, which is a major contributor to the value of the real part of dielectric permittivity 𝜀′. 

Cholesteryl oleyl carbonate does not have a significant longitudinal dipole moment. It is expected 

that, as cholesteryl chloride is added, the net dipole moment and real part of the permittivity 𝜀′ will 

increase.  

The mean values of the real part of the permittivity at the transition isotropic to mesogenic 

phase transition 𝜀𝐼𝑀
′  are shown for all compositions in Table 5.7 and plotted in Figure 5.12. The 

values reported are the averages over all runs with one standard deviation from the mean reported 

as the uncertainty. All runs (on both heating and cooling, and at 10 kHz and 100 kHz) follow an 

approximately linear trend as a function of composition. Also, unlike the phase transition 

temperature 𝑇𝐼𝑀, the permittivity 𝜀𝐼𝑀
′  at the phase transition is not heavily dependent on heating 

versus cooling. It is not clear whether the scatter in the data over composition is due to random 

error, to systematic errors, or to whether or not the data can be broken up into smaller regions. The 

slope of the line as a function of composition is seen in Figure 5.12. 
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Table 5.7: The average real part of the permittivity at the transition ε’IM.  

 

This corresponds to the estimated transition temperatures 𝑇𝐼𝑀 from Table 5.6 for the heating and cooling runs at both 10 kHz 

and 100 kHz. Within error all four values per composition were relatively close. 

 
Composition (% CC) 

𝜀𝐼𝑀
′

 on Heating 𝜀𝐼𝑀
′  on Cooling  

 10 kHz 100 kHz 10 kHz 100 kHz  

 0 2.607 ± 0.002 2.5986 ± 0.0007 2.606 ± 0.001 2.598 ± 0.001  

 1.5 2.5324 ± 0.0006 2.522 ± 0.001 2.5334 ± 0.001 2.523 ± 0.002  

 3 2.5468 ± 0.0006 2.539 ± 0.001 2.5460 ± 0.001 2.5376 ± 0.0004  

 6 2.671 ± 0.001 2.6640 ± 0.0005 2.6726 ± 0.001 2.6661 ± 0.0003  

 12 2.679 ± 0.003 2.6702 ± 0.0004 2.681 ± 0.001 2.6726 ± 0.0006  

 16 2.7136 ± 0.0006 2.7019 ± 0.0003 2.7143 ± 0.001 2.7028 ± 0.0002  

 20 2.885 ± 0.001 2.876 ± 0.002 2.8888 ± 0.001 2.879 ± 0.002  

 25 2.837 ± 0.003 2.816 ± 0.003 2.837 ± 0.001 2.815 ± 0.004  

 30 3.032 ± 0.001 3.0085 ± 0.0005 3.034 ± 0.001 3.011 ± 0.001  

 35 3.075 ± 0.003 3.054 ± 0.001 3.076 ± 0.001 3.0557 ± 0.0005  

 40 3.155 ± 0.001 3.142 ± 0.001 3.158 ± 0.001 3.146 ± 0.003  

 45 3.2467 ± 0.0006 3.235 ± 0.001 3.2485 ± 0.001 3.236 ± 0.001  

 50 3.383 ± 0.001 3.354 ± 0.001 3.3833 ± 0.001 3.3537 ± 0.0003  

 55 3.3521 ± 0.0006 3.333 ± 0.001 3.3544 ± 0.001 3.3343 ± 0.0005  

 60 3.420 ± 0.002 3.3976 ± 0.0005 3.4228 ± 0.001 3.3996 ± 0.0006  
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Figure 5.12: The average real part of the permittivity transition ε’IM. 

 

This corresponds to the estimated transition temperatures 𝑇𝐼𝑀 from Table 5.6 for the heating and cooling runs at both 10 kHz 

and 100 kHz. For a single composition (look at Figure 5.3a of the 12% composition for example), the heating and cooling values 

appear quite different between the 10 kHz and 100 kHz runs. When plotted as a function of composition, these differences 

appear negligible. The relationship between 𝜀𝐼𝑀
′  and composition appears linear over both heating and cooling runs as well as 

10 kHz versus 100 kHz. A combined fit was found: 

 The overall slope is (0.01530 ±  10−5) 
1

%CC
.  

 The intercept is 2.53 ±  0.05. 
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5.3.1.3 The Dielectric Loss ε"
IM of the Permittivity at the Transition Temperature TIM 

The dielectric loss (also referred to as the imaginary part of the permittivity) is a measure 

of the energy dissipation when a field is applied. The addition of cholesteryl chloride means the 

addition of longitudinal dipoles. More dipoles mean that there are more constituents to stir back 

and forth in response to an applied field. As discussed earlier, as the applied frequency nears the 

relaxation frequency, maximal dissipation occurs. 

The mean values of the dielectric loss 𝜀𝐼𝑀
′′  that correspond to the above mentioned isotropic 

to mesogenic phase transition temperatures are shown for all compositions in Table 5.8 and plotted 

in Figure 5.13. The values reported are the averages over all runs with one standard deviation from 

the mean reported as the uncertainty. Unlike the real part, there is a distinct difference between the 

10 kHz and 100 kHz measurements. For most of the compositions near the isotropic to mesogenic 

phase transition, 10 kHz is in the frequency range of lowest dissipation (i.e., far from the relaxation 

peak). This is also referred to as the frequency plateau or static permittivity region. In the static 

permittivity region the molecules are able to sufficiently respond and realign in response to an 

applied field. 
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Table 5.8: The average imaginary part of the permittivity transition ε”
IM. 

 

 This corresponds to the estimated transition temperatures 𝑇𝐼𝑀 from Table 5.6 for heating and cooling runs at both 10 kHz and 

100 kHz. The two frequencies gave two distinct behaviors. For a single frequency measurement, both heating and cooling runs 

were relatively similar at a fixed frequency. 

 
Composition (% CC) 

ε”IM  10-3 on Heating ε”IM  10-3 on Cooling  

 10 kHz 100 kHz 10 kHz 100 kHz  

 0 1.56 ± 0.03 5.50 ± 0.04 1.61 ± 0.03 5.52 ± 0.03  

 1.5 0.92 ± 0.04 9.50 ± 0.06 0.93 ± 0.04 9.57 ± 0.05  

 3 1.94 ± 0.04 13.200 ± 0.004 1.686 ± 0.004 12.95 ± 0.03  

 6 3.1 ± 0.1 20.11 ± 0.02 2.805 ± 0.004 19.96 ± 0.04  

 12 3.8 ± 0.2 30.6 ± 0.7 3.4 ± 0.2 30.7 ± 0.6  

 16 4.6 ± 0.2 39.4 ± 0.4 3.96 ± 0.09 39.7 ± 0.5  

 20 5.5 ± 0.2 45.0 ± 0.6 5.46 ± 0.07 45.2 ± 0.4  

 25 5.64 ± 0.07 54.5 ± 0.3 5.7 ± 0.1 54.7 ± 0.3  

 30 12.3 ± 0.2 61.6 ± 0.6 12.4 ± 0.2 63.1 ± 0.3  

 35 7.2 ± 0.1 68.4 ± 0.4 7.5 ± 0.2 69.1 ± 0.5  

 40 8.2 ± 0.2 73 ± 3 8.3 ± 0.1 70.0 ± 0.9  

 45 8.4 ± 0.1 76.2 ± 0.5 8.9 ± 0.2 77.3 ± 0.9  

 50 20 ± 3 86 ± 1 17.2 ± 0.5 88 ± 1  

 55 9.5 ± 0.1 83.2 ± 0.9 10.2 ± 0.6 88 ± 1  

 60 14.9 ± 0.7 85.9 ± 0.6 15.0 ± 0.3 87.1 ± 0.8  
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Figure 5.13: The imaginary part of the permittivity at the transition ε”
IM. 

 

This corresponds to the estimated transition temperature 𝑇𝐼𝑀 from Table 5.6 for the heating and cooling runs at both 10 kHz and 

100 kHz. The dotted lines are for reference only and are not fits.  

 

When plotted as a function of composition, both the 10 kHz and 100 kHz runs are non-linear over the compositions measured. 

As more longitudinal dipoles are added (i.e., higher concentration of cholesteryl chloride in cholesteryl oleyl carbonate), there 

are more constituents that respond by oscillating back and forth. This results in more thermal dissipation. The 10 kHz 

measurements are in a regime of lowest dissipation (i.e., the frequency plateau). 

 

At 10 kHz a spike in the dissipation occurs at both 30% and 50% cholesteryl chloride. At 50% cholesteryl chloride, the blue 

phases are gone, the cholesteric phase is narrow, and two smectic phases appear. Both above and below 50% cholesteryl chloride, 

the chiral nematic phase is relatively wide. Based on McKinnon et. al., the blue phases are expected to dissapear by 45% CC 59. 

However, no blue phases were observed under the microscope above 25%. If a blue phase exists above 25% CC, then it most 

likely has a Bragg reflection that lies within the IR. 
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5.3.2 Permittivity Discontinuity at the Isotropic-Mesophase Transition 

As discussed in Section 1.2.2.3, a phase transition can be classified as either first or second 

order. A first order transition, the order parameter 𝜀′ versus temperature (discussed in Section 

1.2.2.3), shows a discontinuity in the data between where one phase ends and another begins. In 

the limit of low chirality, cholesteric liquid crystals are approximately nematic, which have a first 

order transition. 

The discontinuities of both the real part and imaginary part of the permittivity, respectively 

Δ𝜀′ and Δ𝜀′′, are estimated by taking the difference between the estimated lowest temperature 

value, 𝜀𝐼𝑀
′  or 𝜀𝐼𝑀

′′ , of the permittivity in the isotropic phase and the highest temperature value, 

𝜀𝑀𝑒𝑠𝑜𝑝ℎ𝑎𝑠𝑒
′  or 𝜀𝑀𝑒𝑠𝑜𝑝ℎ𝑎𝑠𝑒

′′ , of the permittivity in the mesophase. In the previous section the lowest 

temperature data point in the isotropic phase was given by the simultaneous values of 𝜀𝐼𝑀
′ , 𝜀𝐼𝑀

′′ , 

and  𝑇𝐼𝑀. A corresponding set of values were used as the highest temperature data point in the 

mesophase that followed the isotropic phase. The estimated discontinuity Δ𝜀′ for the real part of 

the permittivity is shown in Figure 5.14 versus composition. The estimated discontinuity Δ𝜀′′ for 

the dielectric loss is shown in Figure 5.15. 

On cooling in Figure 5.14, the 10 kHz measurements of the real part Δ𝜀′  have no 

discontinuity in the isotropic to mesogenic transition for the cholesteryl oleyl carbonate rich 

mixtures. The transition on cooling is monotropic and shows an isotropic to blue phase transition 

between the cholesteric and isotropic phase from the 0% through 20% mixtures. This will be 

discussed in detail Section 5.3.3. As the 40% mixture is approached there is a noticeable change 

in Δ𝜀′. The mixtures up to 40% are of the most interest because they were reported to have at least 

one blue phase 59. As will be seen in Section 5.3.3, at least two blue phases were visually confirmed 

up to the 20% mixture. If a blue phase exists above 25%, it would be seen in the infrared (which 
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is beyond the capability of the measuring apparatus used). Between the 40% and 60% mixtures, 

an isotropic to cholesteric phase transition was confirmed both dielectrically and visually. The 100 

kHz measurements seemed to have an increasing discontinuity from 0% to the 30% mixture. This 

may be due to each increase in composition happens to also be closer to resonance, which was 

around 100 kHz. 

On heating in Figure 5.14, both the 10 kHz and 100 kHz measurements show a noticeable 

discontinuity Δ𝜀′ for the mesogenic to isotropic phase transition. The transition on heating is 

cholesteric to isotropic for all mixtures. The increase in discontinuity for heating measurements 

are showing a decrease in chirality with the possible loss of a blue phase. 
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Figure 5.14: This is the estimated discontinuity of the real part of the permittivity at the phase transition. 

 

The estimated discontinuity is 𝛥𝜀′ = 𝜀𝐼𝑀
′ − 𝜀𝑀𝑒𝑠𝑜𝑝ℎ𝑎𝑠𝑒

′  of the real part 𝜀′ of the permittivity at the phase transition. The value 

𝜀𝑀𝑒𝑠𝑜𝑝ℎ𝑎𝑠𝑒
′′  represents an arbitrary value of the dielectric loss 𝜀′′ in any mesogenic phase. The dotted lines are for reference only 

and are not fits. After the value of 𝜀𝐼𝑀
′  corresponding to the transition temperature  𝑇𝐼𝑀 was found, the value below the isotropic 

phase in the mesophase was chosen: 

 For the cooling runs at 10 kHz, the choice generally corresponded to the neighboring data point 

immediately below 𝜀𝐼𝑀
′ . 

 For the heating runs at 10 kHz as well as all 100 kHz runs, the value chosen in the mesophase, may have 

been up to two data points removed from 𝜀𝐼𝑀
′ . That is, looking at Figure 5.4a for the 12% mixture, it is 

seen that at least one data point immediately below 𝜀𝐼𝑀
′  occurs within the temperature range at which the 

transition is still occurring. 
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Figure 5.15: The estimated discontinuity of the dielectric loss at the phase transition. 

 

 The discontinuity is defined as 𝛥𝜀′′ = 𝜀𝐼𝑀
′′ − 𝜀𝑀𝑒𝑠𝑜𝑝ℎ𝑎𝑠𝑒

′′ . The value 𝜀𝑀𝑒𝑠𝑜𝑝ℎ𝑎𝑠𝑒
′′  represents an arbitrary value of the dielectric 

loss 𝜀′′ in any mesogenic phase. The dotted lines are for reference only and are not fits. After the value of 𝜀𝐼𝑀
′′  was found, the 

value below the isotropic phase in the mesophase was determined by the corresponding real part 𝜀𝑀𝑒𝑠𝑜𝑝ℎ𝑎𝑠𝑒
′  discussed in Figure 

5.14. At both measuring frequencies as well as on heating and cooling the discontinuity increases. Some of the peaks seen in 

Figure 5.14 can be seen here. On heating at both 10 kHz and 100 kHz, there is an obvious spike in the discontinuity 𝛥𝜀′′ at the 

16% composition. On cooling, there is an obvious spike at the 30% composition. 

 

5.3.3 Temperature and Frequency Dependence: Dividing the Data into Four Composition 

Regions 

Section 5.3.3 aims to set the context of the argument with respect to the phase sequence of 

each sample. The optical microscopy results set this context as they are a direct confirmation of a 

change in a phase. Each subsection of 5.3.3.1 through 5.3.3.4 will first discuss the optical 

microscopy results. The frequency and thermal response of the dielectric permittivity will then be 
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discussed. The frequency response is important for determining how near or far a measurement is 

from a relaxation peak at frequency 𝑓𝑟. The thermal response at two different frequencies will 

allow for a comparison of how each phase behaves. 

Fifteen different mixtures of cholesteryl oleyl carbonate with cholesteryl chloride were 

studied. Data collection followed the same pattern as for the 12% mixture which was discussed in 

Section 5.2. Both dielectric and cross-polarized microscopy data were collected. 

The amount of data collected was too much to clearly show in only a few graphs. For clarity, 

the data are split into four manageable regions of three to five mixtures each. For each region, the 

following will be discussed in order: cross-polarized microscopy observations, frequency 

dependence, the high frequency (100 kHz) temperature measurements, and the low frequency (10 

kHz) temperature measurements.  

The discontinuity Δ𝜀′ discussed in Section 5.3.2 and presented in Figure 5.14 serves as a 

reasonable guide to splitting up the data. Region I consists of the 0% through 6% cholesteryl 

chloride mixtures. Region II consists of the 12% through 30% cholesteryl chloride mixtures in 

which there is a peak in Δ𝜀′ (see Figure 5.14) at the 16% mixture on heating at 10 kHz. Regions 

III and IV equally consist of the remaining six compositions studied from 35% through 60% 

cholesteryl chloride. For Region III, there is an extremum at 40% for Δ𝜀′ (Figure 5.14) and an 

discontinuity at 40% for Δ𝜀′′ (Figure 5.15). 

Regions I and II are of primary interest to this dissertation. Not only were blue phases seen 

in my own measurements, but also they were reported in another study for the range of those 

regions 59. Regions III and IV were studied to understand what the phase transition looks like for 

samples without a blue phase. Additionally, the 55% mixture in Region IV unexpectedly had a 

narrow cholesteric phase with a thermally wide smectic phase below that. 
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The cross-polarized microscopy observations helped inform what phases were seen 

dielectrically. In order to serve as a guide for the discussion in the subsections that follow, the 

resultant phase diagram from my optical microscopy observations is shown in Figure 5.16. The 

textures (the resultant photograph taken with cross-polarized microscopy at a given frequency and 

temperature) associated with a given phase are well known 61. The identification of those textured 

from cross-polarized microscopy was assisted with Ingo Dierking’s book on liquid crystalline 

textures 61. It is beneficial to view the microscopic observations in color. 
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(b) Phase Diagram on Cooling 
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Figure 5.16: Phase diagram from the optical cross-polarized microscopy observations.  

 

The phase diagram from all microscopic observations. As will be seen per region, some of the phases have temperature ranges 

of coexistence. For clarity, the coexistence regions are not shown in these phase diagram. For the cases of phase coexistence, 

the onset of the phase is reported as either the phase transition or the point at which one phase dominates over the other in the 

photographs (which ever was clearer). 
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5.3.3.1 Region I Results: 0, 1.5, 3, 6% Cholesteryl Chloride 

Region I mixtures are highly chiral, meaning they have blue phases which are of primary 

interest in this dissertation. Figures 5.17 through 5.20 show the optical cross-polarized microscopy 

images at select temperatures taken for each mixture. 

Unmixed cholesteryl oleyl carbonate is the starting point. It is an overall interest to see how 

its phases evolve as a function of chirality when cholesteryl chloride is increasingly added. Cross-

polarized microscopy results are seen for cholesteryl oleyl carbonate in Figure 5.17 with its phase 

sequence summarized in Table 5.9a. It has a smectic phase around room temperature and below. 

Figures 5.17c through 5.17f shows the smectic phase winding into a cholesteric phase on heating. 

At least a blue phase I or II was seen. Cholesteryl oleyl carbonate also has a blue phase III 57. 

However, its reflection is in the ultraviolet which are not easily accessible with the setup. 

All of Region I has a similar phase sequence to cholesteryl oleyl carbonate. The phase 

sequences for the 1.5% through 6% mixtures are seen in Figures 5.17 through Figure 5.20 and are 

summarized in Table 5.9. It is seen, in Table 5.14, that all of Region I is monotropic for the blue 

phases. Blue phases I and II appear only on cooling. The smectic and cholesteric phases are not 

monotropic. 

The selective reflections of the blue phases and cholesteric phase for Region I follow a 

pattern. On increasing composition (i.e., decreasing chirality), the selective reflections of the blue 

phases change. Blue phase II has a selective reflection that increases in wavelength from violet to 

green. Blue phase I has a selective reflection that increases in wavelength from cyan to yellow. 

The cholesteric phase (i.e., N*) on increasing composition (whenever it became planar aligned) 

appears to go from violet to blue. In all cases, an unaligned cholesteric phase appears yellow or 

tan. 
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(a)  18.30 °C  (b)  20.80 °C (c)  21.20 °C  (d)  21.30 °C 

    

 (e)  21.40 °C  (f)  21.50 °C  (g)  22.00 °C  (h)  36.00 °C 

    

 (i)  45.0 °C  (j)  39.80 °C  (k)  39.60 °C  (l)  39.20 °C 

    

 (m)  39.00 °C  (n)  38.70 °C  (o)  38.10 °C  (p)  37.40 °C 

    

 (q)  37.00 °C   (r)  36.50 °C  (s)  36.00 °C  (t)  28.00 °C 

    

 (u)  25.80 °C (v)  23.00 °C  (w)  21.80 °C (x)  20.40 °C 

    

Figure 5.17: Region I optical cross-polarized microscopy images for cholesteryl oleyl carbonate. 

 

Selected images captured under reflectance. Indices (a) through (i) are on heating. Indices (j) through (x) are on cooling. Prior 

to cooling, the sample was heated a few degrees into the isotropic phase, index (i). The temperature rate did not exceed 0.2 K 

per minute for temperature changes above room temperature (above 21 °C). The white dots observed in the isotropic phase are 

dust on the slide and cover slip. 
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(a)  13.70 °C  (b)  20.30 °C (c)  20.50 °C  (d)  20.60 °C 

    

 (e)  20.75 °C  (f)  21.30 °C  (g)  21.80 °C  (h)  35.00 °C 

    

 (i)  37.00 °C  (j)  38.50 °C  (k)  40.00 °C  (l)  39.80 °C 

    

 (m)  39.40 °C  (n)  39.00 °C  (o)  38.20 °C  (p)  37.40 °C 

    

 (q)  36.60 °C   (r)  34.50 °C  (s)  30.00 °C  (t)  29.50 °C 

    

 (u)  29.00 °C (v)  28.00 °C  (w)  27.00 °C (x)  22.20 °C 

    

Figure 5.18: Region I optical cross-polarized microscopy images for the mixture 1.5% cholesteryl chloride at select 

temperautres.  

 

Selected images captured with cross-polarized microscopy under reflectance. Indices (a) through (k) are on heating. Indices (l) 

through (x) are on cooling. Prior to cooling the sample was heated a few degrees into the isotropic phase. The temperature rate 

did not exceed 0.2 K per minute for temperature changes above room temperature (above 21 °C). The white dots observed in 

the isotropic phase are dust on the slide and cover slip. 
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(a)  19.6 °C  (b)  20.5 °C (c)  28.5 °C  (d)  38.5 °C 

    

 (e)  39.0 °C  (f)  39.2 °C  (g)  38.9 °C  (h)  38.8 °C 

    

 (i)  38.7 °C  (j)  38.6 °C  (k)  38.5 °C  (l)  37.9 °C 

    

 (m)  37.5 °C  (n)  37.1 °C  (o)  36.9 °C  (p)  36.5 °C 

    

 (q)  36.3 °C   (r)  36.0 °C  (s)  35.7 °C  (t)  35.0 °C 

    

 (u)  34.2 °C (v)  33.4 °C  (w)  33.0 °C (x)  32.5 °C 

    

Figure 5.19: Region I optical cross-polarized microscopy images for the mixture 3% cholesteryl chloride at select temperautres.  

 

Selected images captured with cross-polarized microscopy under reflectance. Indices (a) and (b) are from a different 

cooling/heating run that went below room temperature. Indices (c) through (f) are on heating. Indices (g) through (x) are on 

cooling. The white dots observed in the isotropic phase are dust on the slide and cover slip. Index (c) is interpreted as the  

cholesteric phase spontaneously planar aligning prior to the transition into the isotropic phase. 
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(a)  15.9 °C (b)  21.8 °C (c)  40.2 °C  (d)  40.1 °C 

    

 (e)  40.0 °C  (f)  39.9 °C  (g)  39.7 °C  (h)  39.5 °C 

    

 (i)  39.3 °C  (j)  39.1 °C  (k)  37.1 °C  (l)  36.7 °C 

    

 (m)  36.3 °C  (n)  35.9 °C  (o)  35.5 °C  (p)  35.0 °C 

    

 (q)  34.5 °C   (r)  34.0 °C  (s)  33.0 °C  (t)  32.0 °C 

    

 (u)  34.0 °C (v)  36.0 °C  (w)  38.0 °C (x)  40.0 °C 

    

Figure 5.20: Region I optical cross-polarized microscopy images for mixture 6% cholesteryl chloride at select temperatures.  

 

Selected images captured with cross-polarized microscopy under reflectance. Indices (a) and (b) are from a different 

heating/cooling run where the sample was cooled below room temperature. The sample was heated into the isotropic phase prior 

to taking any photographs after (b). Indices (c) through (t) are on cooling. Indices (u) through (x) are on heating. The white dots 

observed in the isotropic phase are dust on the slide and cover slip. 
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Table 5.9: Region I observed phase sequences from optical cross-polarized microscopy. 

 

Blue phases were observed for all of these mixtures on cooling. The color of the associated blue phases is included. For the 

cholesteric (N*) phase, the color is included on heating since that is where it was observed (i.e., the sample spontaneously planar 

aligned). On cooling it was randomly aligned. 

 

All of Region I has a smectic phase. Due to the lack of temperature control below 20.0 °C on cooling, the same SmA transition 

temperature is reported for both cooling and heating for the (d) 3% and (e) 6% mixtures. 

 

(a) 0% mixture 

 

Heating 

 

SmA
21.2 °C 
→    

N∗

UV?

41.0 °C
→    Isotropic  

 

 Cooling 

SmA
21.2 °C
←    N∗

28.0 °C
←    |             |

36.5 °C
←    

BPII
Violet

39.6 °C
←    Isotropic

  |
23.0 °C
←    

BPI ?
Cyan

  
38.7 °C
←    |                    

 

 

 

(b) 1.5% mixture 

 

Heating 

 

SmA
20.4 °C 
→    

N∗

UV?

39.5 °C
→    |                                          

      |
37.0  °C
→    Isotropic

         

 

 Cooling 

 

SmA
20.4 °C
←    N∗

33.4 °C
←    |            |

37.5 °C
←    

BPII
Blue

40 °C
←   Isotropic

|
27.5 °C
←    

BPI
Green

39.2 °C
←    |

  

 

 

(c) 3% mixture 

 

 

Heating 

 

𝑆mA
19.6 °C 
→    

N∗

Violet

39.0 °C 
→    

BPI
Violet

39.2 °C
→    Isotropic  

 

 

 

Cooling 

 

 

                                |
35.7 °C
←      

BPI
Green

38.5 °C
←    

BPII
Blue

38.8 °C
←    Isotropic

SmA
19.6 °C
←    N∗

36.7 °C
←    |                                                                 

  

   

(d) 6% mixture 
 

Heating 

 

𝑆mA
18.3 °C 
→    

N∗

Blue

40.0 °C
→    Isotropic  

 

 

 

 
Cooling 

 

                  |
33.0 °C
←    

BPII
Green

       
40.1 °C
←    Isotropic 

|
33.0 °C
←    

BPI
Yellow

39.2 °C
←    |      

  SmA
18.3 °C
←    N∗

35.5 °C
←    |                                                           

   

 

 

The purpose of looking at the frequency response of each mixture was to determine the 

relaxation frequencies  𝑓𝑟  as a function of temperature. This was motivated by the striking 
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difference between the 10 kHz and 100 kHz thermal cycling measurements. It was of interest to 

see if the 100 kHz probe frequency measurements for thermal cycling were near a relaxation 

process  𝑓𝑟 or in the plateau region (that is, the low frequency region). 

Figure 5.21 shows the relaxation frequency at discrete temperatures for Region I. Above 

the mesogenic to isotropic transition temperature 𝑇𝐼𝑀 (in Figure 5.21, measurements to the left), 

all of the mixtures have relaxation processes that are well above 100 kHz. Near and below the 

transition temperature 𝑇𝐼𝑀, all of Region I has a relaxation process 𝑓𝑟 near 100 kHz. As discussed 

in Section 5.2.2 for the representative 12% mixture, the 10 kHz probe measurement was more 

appropriate for studying the temperature dependence of the static dielectric permittivity. For a 

given constant frequency measurement, it is important that all temperature measurements are in 

the plateau frequency region. 

The 100 kHz thermal cycling measurements are seen in Figure 5.22. Despite being near 

the relaxation processes of Region I, there are three useful features to note for both the heating and 

cooling runs. First, in the isotropic phase, there is a pretransitional curvature near 𝑇𝐼𝑀 as discussed 

in Chapters 2 and 4. It is not clear if the pretransitional curvature observed is due to the same 

mechanism as in Chapter 4. Secondly, the discontinuity from the isotropic phase into the 

mesophase (or vice versa on heating) is exaggerated in comparison to the 10 kHz measurements 

seen in Figure 5.23. The transition temperature 𝑇𝐼𝑀 does not have a frequency dependence. The 

100 kHz probe measurements (near a relaxation process) serve as a way of determining where the 

phase transition is at for the 10 kHz measurements in Figure 5.23 (especially for the cooling runs 

where a discontinuity is not noticeable). Thirdly, the mesophase measurements fan out versus 

composition. The slope for each compositions mesophase increases with increasing composition 
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in Region I, distinguishing one phase from another. The 100 kHz measurements serve as a check 

on the mixture process (so long as they are near the relaxation frequency). 

The 10 kHz thermal cycling measurements are seen in Figure 5.23. The pretransitional 

curvature in the isotropic phase leading to  𝑇𝐼𝑀 is noticeably absent. This leads to concluding that 

the mechanism for the curvature in the isotropic phase for the 100 kHz measurement is a frequency 

dependent viscosity effect while the effect discussed in Section 2.3 and all of Chapter 4 is due to 

antiparallel dimer formation. 

In comparison to the 100 kHz measurements, the mesophase region at 10 kHz (i.e., below 

 𝑇𝐼𝑀 ) is feature rich. On heating a noticeable first order discontinuity is seen between the 

cholesteric phase and the isotropic phase. On cooling, as shown in Table 5.9, blue phases are seen 

between the isotropic and cholesteric phases. As shown in Figures 5.3a for the 12% mixture, as 

well as for all of Region I in Figure 5.23, the peak on cooling is the mesophase temperature range 

that corresponds to when the cholesteric phase is fully formed. Between that peak and isotropic 

phase corresponds to the blue phases. Although not seen under the microscope, I suspect blue 

phase III corresponds to the almost flat, narrow temperature range below the isotropic phase. Blue 

phases I and II are not distinguishable with dielectric measurements. Based on microscopic 

observations this could be due to at least two factors: coexistence of the two blue phases occurring 

for Region I mixtures, and both are cubic structures which to first approximation are isotropic.  
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Figure 5.21: Region I temperature dependence of the relaxation frequency fr.  

 

The frequency 𝑓𝑟 is a fitting parameter discussed for the 12% mixture above. Parametrically, it corresponds to the peak of the 

semicircle discussed in Figure 5.6b. For Region I, the most striking change in the slope of the data is between the 0% and 1.5% 

cholesteryl chloride mixture. The other three had very similar relaxation processes, with the probe frequency of 10 kHz being 

sufficiently within the plateau frequency region (i.e., sufficiently outside of the relaxation semicircle). 
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(a) Heating runs of 𝜀′ with an inset of 𝜀′′ 
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(b) Cooling runs of 𝜀′ with an inset of 𝜀′′ 
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Figure 5.22: Region I permittivity at 100 kHz. At this frequency, a regular pattern of the slope is formed. 
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(a) Heating runs of 𝜀′ with an inset of 𝜀′′ 
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(b) Cooling runs of 𝜀′ with an inset of 𝜀′′ 
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Figure 5.23: Region I permittivity at 10 kHz. 

 

Heating and cooling runs are different. The heating runs in part (a) shows a large discontinuity before entering the isotropic 

phase. A few data points on heating have a different slope right before entering the highest temperature isotropic phase. There 

may be a blue phase on heating in the isotropic phase. The cooling runs in part (b) show the possibility of more than one blue 

phase. Optical microscopy observations corroborate this. Additionally, on increasing chirality, there is a contraction of the width 

in the mesophase peak. 



www.manaraa.com

181 

 

 

5.3.3.2 Region II Results: 12, 16, 20, 25, 30% Cholesteryl Chloride 

Region II mixtures are also expected to be highly chiral but less chiral than Region I 59. 

Figures 5.9 and 5.24 through 5.27 show the cross-polarized microscopy images at select 

temperatures for each mixture in Region II. Table 5.10 shows the corresponding sequence of 

phases. 

In Figure 5.14, a peak in the discontinuity Δ𝜀′ is seen at the 16% mixture. This probably 

corresponds to a loss of one of the blue phases. The 12%, 16%, and 20% mixtures have monotropic 

blue phases. The 12% mixture was discussed in Section 5.2.3 with microscopy results shown in 

Figure 5.9. In addition to blue phase I and II seen in Figure 5.24, the 12% mixture has a blue phase 

III 57. The 16% mixture (seen in Figure 5.25) also has a blue phase I and II while the 20% only has 

a blue phase I (seen in Figure 5.26). Since blue phase III is not directly observed in these 

measurements, it is probably only blue phase II that is disappearing after the 16% mixture. It is 

known that blue phase II exists over a limited range of intermediate chirality 3. At the highest and 

lowest chirality thresholds (where blue phases can exist), blue phases I and III are allowed to be 

present 3. 

The selective reflections of the blue phases and cholesteric phase in the 12%, 16%, and 20% 

mixtures continue the same pattern from Region I. On increasing composition, the selective 

reflection of blue phase II increases from green to red and then disappears by the 20% mixture. 

Blue phase I has a selective reflection that increases from green to red and disappears by the 25% 

mixture. The cholesteric phase has a selective reflection that increases from blue for the 12% 

mixture (Figure 5.9), green at 16% (Figure 5.24), orange at 20% (Figure 5.25), to red at 25% 

(Figure 5.26). 

  



www.manaraa.com

182 

 

 

(a)  6.3 °C  (b)  17.5 °C (c)  39.1 °C  (d)  40.1 °C 

    

 (e)  40.5 °C  (f)  40.9 °C  (g)  42.5 °C  (h)  42.7 °C 

    

 (i)  42.9 °C  (j)  42.0 °C  (k)  41.6 °C  (l)  41.0 °C 

    

 (m)  40.4 °C  (n)  40.2 °C  (o)  40.0 °C  (p)  39.8 °C 

    

 (q)  39.6 °C   (r)  39.4 °C  (s)  39.2 °C  (t)  39.0 °C 

    

 (u)  38.8 °C (v)  38.6 °C  (w)  38.4 °C (x)  38.0 °C 

    

Figure 5.24: Region II optical cross-polarized microscopy images for the 16% cholesteryl chloride mixture at selected 

temperatures. 

 

Selected images captured with cross-polarized microscopy under reflectance. Indices (a) and (b) are from a different run where 

the sample was cooled below room temperature. Indices (c) through (i) are on heating. Indices (j) through (x) are on cooling. 

The white dots observed in the isotropic phase are dust on the slide and cover slip. 
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(a)  6.2 °C  (b)  14.9 °C (c)  43.80 °C  (d)  44.10 °C 

    

 (e)  44.50 °C, (isotropic)  (f)  44.00 °C, (stage moved)  (g)  43.87 °C  (h)  43.84 °C 

    

 (i)  43.82 °C  (j)  43.78 °C  (k)  43.69 °C  (l)  43.48 °C 

    

 (m)  43.29 °C  (n)  43.00 °C  (o)  42.61 °C  (p)  41.99 °C 

    

 (q)  41.2 °C   (r)  41.0 °C   (s)  40.8 °C  (t)  40.6 °C 

    

 (u)  40.4 °C (v)  40.2 °C  (w)  40.0 °C (x)  36.0 °C 

    

Figure 5.25: Region II optical cross-polarized microscopy images for the 20% cholesteryl chloride mixture at selected 

temperatures. 

 

Images captured under reflectance. Indices (a) and (b) are from a different run where the sample was cooled below room 

temperature. Indices (c) through (e) are on heating. Indices (f) through (x) are on cooling. The white dots observed in the 

isotropic phase are dust on the slide and cover slip. 
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(a)  19.80 °C  (b)  27.50 °C (c)  30.00 °C  (d)  35.00 °C 

    

 (e)  40.00 °C  (f)  40.00 °C, (Sheared)  (g)  43.00 °C  (h)  43.00 °C, (Sheared) 

    

 (i)  44.00 °C  (j)  45.00 °C  (k)  45.70 °C  (l)  44.00 °C 

    

 (m)  43.50 °C  (n)  43.00 °C  (o)  42.50 °C   

   

 

Figure 5.26: Region II optical cross-polarized microscopy images for the 25% cholesteryl chloride mixture at selected 

temperautres. 

 

Images captured under reflectance. Indices (a) through (k) are on heating. Indices (l) through (x) are on cooling. The temperature 

rate did not exceed 0.2 K per minute for temperature changes above room temperature (above 21 °C). The white dots observed 

in the isotropic phase are dust on the slide and cover slip. For index (k), the stage was bumped slightly so the image location is 

different. Prior to image (l), the system was heated to 44 °C. 
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(a)  44.00 °C  (b)  45.60 °C (c)  46.00 °C 
 (d)  46.30 °C 

        (held prior to cooling) 

    

 (e)  46.20 °C  (f)  45.80 °C  (g)  45.50 °C  (h)  45.40 °C 

    

 (i)  45.25 °C  (j)  44.30 °C  (k)  44.00 °C  (l)  43.50 °C 

    

 (m)  43.50 °C 

         (Sheared) 

 (n)  43.50 °C,    

        (Transmission) 
    

  

  

Figure 5.27: Region II optical cross-polarized microscopy images for the 30% cholesteryl chloride mixture at selected 

temperatures.  

 

All images are on reflectance unless otherwise noted. Indices (a) through (d) are on heating. Indices (e) through (n) are on 

cooling. The temperature rate did not exceed 0.2 K per minute for temperature changes above room temperature (above 21 °C). 

The white dots observed in the isotropic phase are dust on the slide and cover slip. For index (d), the temperature was held for 

10 minutes prior to cooling. After index (l), the sample was sheared to see if the samples alignment changed. 
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Table 5.10: Region II phase sequences from optical cross-polarized microscopy for the 12% through 30% cholesteryl chloride 

mixtures.  

 

Blue phases and a smectic phase were observed for (a) the 12%, (b) the 16%, and (c) the 20% mixtures. The color for the 

associated blue phases are included. Neither blue phases nor smectic phases were observed in (d) the 25% mixture and (e) the 

30% mixture down to 6 °C.  

 

For the 25% and 30% mixtures are increasingly less chiral then the previous mixtures. This means that, for the cholesteric phase, 

the wavelength of the selective reflectance is increasing. Since the 25% mixture has an aligned cholesteric that is red, it stands 

to reason that the 30% is in the infrared.  

 

Due to the limited temperature control on cooling below 20.0 °C, the same SmA transition temperature is reported for both 

cooling and heating for the (d) 3% and (e) 6% mixtures. The lowest attainable temperature for the experimental setup ranged 

between 5.5 °C and 12 °C. 

(a) 12% mixture 
 

Heating 

 

𝑆mA
14.2 °C 
→    

N∗

Blue

41.0 °C
→    Isotropic  

 

 
 

Cooling 

 

                                 |
36.5 °C
←     

BPI
Green

 
39.4 °C
←      

BPII
Red

 
40.8 °C
←    Isotropic

SmA
14.2 °C
←    N∗

      37.6 °C  
←       |                                                                            

  

 

(b) 16% mixture 
 

Heating 

 

SmA
10.3 °C 
→    

N∗

Green

42.9 °C
→     Isotropic  

 

 Cooling 

 

         |
38.6 °C
←       

BPII
Green

      
42.5 °C
←    Isotropic  

                    |
38.6 °C
←    

BPI
Red

40.4 °C
←    |                                              

SmA
10.3 °C
←    N∗

                           40.4 °C  
←               |                                                    

  

 

 

(c) 20% mixture 

 

 

Heating 

 

𝑆mA
6.4 °C 
→   

N∗

Orange

44.2 °C
→    Isotropic  

 

 Cooling 

 

  |
40.6 °C
←    

BPI
Red

    
   43.9 °C
←     Isotropic  

  SmA
6.4 °C
←   N∗

      41.8 °C  
←       |                                                                              

    

(d) 25% mixture 

 
Heating 

 
N∗

Red

45.3 °C
→    Isotropic  

 Cooling N∗
      43.7 °C  
←       Isotropic  

(e) 30% mixture Heating 
 
N∗

IR?

46.2 °C
→    Isotropic  

 

 
Cooling 

 

N∗
      45.5 °C  
←       Isotropic  
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The 25% and 30% mixtures were different. Blue phases I and II were not seen at the 25% 

mixture and above. Only an isotropic-cholesteric phase transition was observed. Based on the 

literature, it is possible that blue phase III still exists up to 30%, although it was not observed in 

any of my measurements 59. 

Figure 5.28 follows the same frequency dependence trend as Region I, seen in Figure 5.21. 

For measurements in the isotropic phase, Region II has relaxation processes that are well above 

100 kHz. In the mesophases, all of the relaxation processes are near 100 kHz for the temperature 

range studied. 

The 100 kHz thermal cycling measurements are seen in Figure 5.29. As in Region I the 

mesophases fan out as composition is increased. However, the 16% mixture on heating noticeably 

stands out. Also, the dielectric measurements of the 25% and 30% mixtures runs appear almost 

identical when normalized. Differences are observed by looking at the magnitudes of transition 

temperatures  𝑇𝐼𝑀  (see Table 5.6), the permittivity 𝜀𝐼𝑀
′  (see Table 5.7), and the 10 kHz 

measurements (see Figure 5.30). 

The 10 kHz thermal cycling measurements are seen in Figure 5.30. The heating and cooling 

runs follow the same pattern as in Region I with the exception of the 16% mixture having a large 

relative discontinuity. Also, on cooling, note the peak in the mesophase. The temperature width 

between the peak and the isotropic to mesogenic phase transition temperature  𝑇𝐼𝑀 decreases with 

increasing composition. That is to say, the temperature range of the blue phases decreases. The 

one exception is the 16% mixture. From Figure 5.14, the discontinuity Δ𝜀′ on heating for the 16% 

mixture is higher relative to the adjacent compositions. On cooling at 10 kHz, the range between 

the isotropic phase and the peak in the mesophase dramatically narrows. A blue phase is lost and 

the chirality decreases. 



www.manaraa.com

188 

 

 

 

 

2.8 2.9 3.0 3.1 3.2 3.3 3.4

100

1000

10000

Temperature (
o
C)

 12 % CC

 16 % CC

 20 % CC

 25 % CC

 30 % CC

R
el

ax
at

io
n
 F

re
q
u
en

cy
 f

r (
k
H

z)

Inverse Temperature (1000 K
-1
)

Decreasing Temperature

90 80 70 60 50 40 30 20

 

 

Figure 5.28: Region II temperature dependence of the relaxation frequency. 

 

The relaxation frequency 𝑓𝑟 is a fitting parameter that was discussed for the 12% mixture above. Parametrically, it corresponds 

to the peak of the semicircle shown in Figure 5.6 for the 12% mixture.  

 

For Region II, the relaxation processes are nearly identical. Only the phase transition temperature 𝑓𝑟seems to change. The lowest 

temperature relaxation process had a frequency of 53.3 kHz. However, most temperatures of interest (i.e., near the blue phases 

and transition to/from the isotropic phase) were above 30 °C. By 30 °C the relaxation process was near 90.0 kHz. Near the phase 

transitions, the relaxation frequencies ranged from 282.5 kHz to 385.6 kHz. The probing frequency of 100 kHz was well within 

a relaxation processes. From the raw data (not shown), there is a hint of a higher frequency relaxation process above the 

measuring capabilities of the instrument (i.e., f > 1 MHz). 

 

The relaxation frequency increases with increasing temperature. For both the mesophases and the isotropic phase, the processes 

appear mostly Arrhenius. Arrhenius behavior means that, on a log versus inverse temperature plot, the data form straight lines. 

This corresponds to a single relaxation process. 
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(a) Heating runs of 𝜀′ with an inset of 𝜀′′ 
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(b) Cooling runs of 𝜀′ with an inset of 𝜀′′ 
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Figure 5.29: Region II permittivity at 100 kHz.  

 

On both heating and cooling, the 12% and 16% mixtures continue the fanning out pattern (with a decreasing slope on increasing 

percent composition) seen in Figure 5.22. However, by the 20% mixture, the relative slope abruptly increases and then decreases 

at 25%. This abrupt change beyond the 16% mixture could be due to a combination of both a decrease in chirality and the loss 

of preferential allignment in the dielectric cell.  
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(a) Heating of 𝜀′ with an inset of 𝜀′′ 

-12 -8 -4 0 4 8

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

-12 -8 -4 0 4 8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Normalized Dielectric Loss

'
'/
'

' IM

T - T
IM

 (K)

Mesophases Isotropic

 12 % CC

 16 % CC

 20 % CC

 25 % CC

 30 % CC

'
/

' IM

T - T
IM

 (K)

Mesophases Isotropic

 

(b) Cooling of 𝜀′ with an inset of 𝜀′′ 
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Figure 5.30: Region II permittivity at 10 kHz. 

 

On heating in part (a) the 12% and 16% mixtures continue the pattern of increasing discontinuity 𝛥𝜀′ with increasing percent 

composition from Region I seen in Figure 5.23a. Beyond the 16% mixture, 𝛥𝜀′ begins to decrease. This abrupt change beyond 

the 16% mixture could be due to a combination of both a decrease in chirality and a loss of a blue phase. The cooling run in part 

(b) continues the trend from Region I seen in Figure 5.23b in which the width of the mesophase peak decreases on decreasing 

chirality. This hump which is decreasing in width in the mesophase region is at least one blue phase.  
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5.3.3.3 Region III Results: 35, 40, 45% Cholesteryl Chloride 

Based on McKinnon et. al. (see Figure 5.10), Region III mixtures are expected to mark the 

range in which the blue phases disappear, leaving a less chiral system with only an isotropic to 

cholesteric phase transition 59. The cross-polarized microscopy observations seen in Figure 5.31 

only show a cholesteric to isotropic phase transition on both heating and cooling. The phase 

sequence for Region III is shown in Table 5.11. 

35% Cholesteryl Chloride 40% Cholesteryl Chloride 45% Cholesteryl Chloride 

Heating Cooling Heating Cooling Heating Cooling 

(a) 16.93 °C (f) 46.80 °C (k) 12.30 °C (p) 49.50 °C (u) 10.50 °C (z) 49.50 °C 

      

(b) 30.00 °C (g) 46.60 °C (l) 20.70 °C (q) 49.40 °C (v) 45.00 °C (aa) 49.40 °C 

      

(c) 46.00 °C (h) 46.40 °C (m) 49.00 °C (r) 40.10 °C (w) 49.00 °C (ab) 49.00 °C 

      

(d) 47.00 °C (i) 25.00 °C (n) 49.40 °C 

(s) 40.00 °C 

(white balance 

off) 

(x) 49.50 °C 

(ac) 32.38 °C 

(white balance 

off) 

      

(e) 55.00 °C (j) 13.63 °C (o) 49.80 °C 

(t) 20.54 °C 

(white balance 

off) 

(y) 55.00 °C  

     

 

Figure 5.31: Region III optical microscopy images for the 35%, 40%, and 45% cholesteryl chloride mixtures at selected 

temperatures. 

 

Images shown are under reflectance as transmission microscopy results gave no new information. For all three samples heating 

was performed from below room temperature prior to cooling. The temperature rate did not exceed 0.2 K per minute for 

temperature changes above room temperature (above 21 °C). The white dots observed in the isotropic phase are dust on the slide 

and cover slip. 
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Table 5.11: Region III transition temperatures between the isotropic and cholesteric phases for the 35%, 40%, and 45% 

cholesteryl chloride mixtures. 

 

Neither blue phases nor smectic phases were observed for room temperature and above. The only phase transition observed was 

cholesteric to isotropic.  

 
 

Composition 

 

Heating 

 

Cooling 
 

 

 
35% 47.0 °C 46.8 °C  

 40% 49.5 °C 49.5 °C  

 45% 50.0 °C 50.0 °C  

 

If a blue phase does exist for the 35%, 40%, or 45% mixtures, either then it is very narrow 

or it has a Bragg peak in the infrared that is beyond the capability of the measuring apparatus used. 

A Bragg peak in the infrared can be supported by extrapolating the wavelength shift of the blue 

phase Bragg peaks observed for 0% through 20% cholesteryl chloride (refer to the phase sequences 

shown in Tables 5.9 and 5.10). 

Along with the microscopic observations, Region III mixtures have almost the same 

relaxation frequency dependence, seen in Figure 5.32. However, in comparison to Regions I and 

II, the relaxation frequency around the isotropic to cholesteric phase transition is higher than 100 

kHz. In Figure 5.33, the 100 kHz thermal cycling measurements are almost identical with the main 

difference being the discontinuity at the phase transition. 

The differences amongst the three are seen in the 10 kHz thermal cycling measurements, 

seen in Figure 5.34. On heating and cooling, the 35% and 45% mixtures have very similar 

temperature dependence. However, again on both heating and cooling, the 40% composition is 

drastically different below the isotropic phase. As seen in Figure 5.14, there is a dramatic change 

in the discontinuity Δ𝜀′ of the isotropic to mesogenic phase transition. Mixtures between 45% and 

80% are expected to be the least chiral with somewhere lying within that range being mostly achiral 

nematic 59. 
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Figure 5.32: Region III temperature dependence of the relaxation frequency. 

 

The relaxation frequency 𝑓𝑟 is a fitting parameter that was discussed for the 12% mixture above. Parametrically, it corresponds 

to the peak of the semicircle discussed in Figure 5.6 for the 12% mixture. Standard errors are shown. 

 

For Region III, as with Region II, the relaxation processes are nearly identical. Only the phase transition temperature 𝑓𝑟 seems 

to noticeably change. With that said, the resolution of the discrete temperature (i.e., equilibrium) data is too low to definitively 

see subtle changes. However, the span of temperatures measured allows for a reasonable estimate of the range of low frequencies 

to use. From the thermal runs, the only non-smooth behavior expected is at the isotropic to mesogenic phase transition where an 

appreciable discontinuity is present. 

 

The relaxation frequency increases with increasing temperature. For both the mesophases and the isotropic phase, the processes 

appear mostly Arrhenius, with a single prominent relaxation curve over the frequency range measured. The lowest temperature 

relaxation process had a frequency of 109.7 kHz. At the highest temperature measured (i.e., 90 °C), the fitted relaxation process 

had a frequency 𝑓𝑟 that is well above the measuring capabilities of the instrument used (i.e.,  𝑓𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡_𝑚𝑎𝑥 = 1 MHz): 17.38 

MHz. Near the transition, the fitted relaxation process had a frequency 𝑓𝑟 at 990.4 kHz. Near the phase transition, both probing 

frequencies (i.e., 10 kHz and 100 kHz) appeared outside of the relaxation process. In the isotropic phase, the highest temperature 

permittivity measured is the same for both frequencies. However, only the 10 kHz measurements were consistently in the plateau 

frequency region for all temperatures measured. 
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(a) Heating runs of 𝜀′ with an inset of 𝜀′′ 
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(b) Cooling runs of 𝜀′ with an inset of 𝜀′′ 
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Figure 5.33: Region III permittivity at 100 kHz. 

 

At this frequency, there is no significant relative difference among 35%, 40%, and 45% mixtures aside from the discontinuity 

from the isotropic phase. Additionally, unlike Regions I and II, there is no significant relative difference between heating and 

cooling among Region III mixtures. 
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(a) Heating of 𝜀′ with an inset of 𝜀′′ 
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(b) Cooling of 𝜀′ with an inset of 𝜀′′ 
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Figure 5.34: Region III permittivity at 10 kHz. 

 

In contrast with Regions I and II, there is no significant relative difference between heating and cooling among Region III 

mixtures. In contrast to the 100 kHz measurements, there is an obvious difference. The 35% to 45% mixtures have a significant 

difference in the mesophase slope and hump. By 45%, the hump is gone.  
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5.3.3.4 Region IV Results: 50, 55, 60% Cholesteryl Chloride 

The initial interest of this chapter was the range of percentages in which blue phases exist 

for two different chirality ranges: 0% to 40% CC and 80% to 100% CC (see Figure 5.10) 59. The 

cholesteryl chloride rich mixtures (Regions I and II) are of opposite chirality to that of the 

cholesteryl chloride rich compounds. Refer back to Figure 1.4 for the chemical structures of 

cholesteryl oleyl carbonate and cholesteryl chloride. 

Region IV mixtures approach a lower chiral nematic behavior. It was of interest to see if 

Region IV would exhibit appreciable pretransitional curvature as the samples looked at in Chapter 

4. Due to unexpected issues with the 70% and above mixtures, the presented mixtures end with 

Region IV at 60% cholesteryl chloride. In Section 3.3, it was discussed that the cholesteryl chloride 

rich mixtures were not stable and eventually decomposed under dielectric measurements. 

Region IV mixtures motivated a further investigation in the microscopic observation for a 

smectic phase. As expected, no blue phase was observed in Region IV 59. The observed phase 

sequences for Region IV are seen in Table 5.12. The 50% mixture showed an unexpected smectic 

phase that was relatively close (6 °C below the isotropic phase transition into cholesteric) to the 

isotropic phase. See Figure 5.16 for the phase diagram that summarizes the observed phase 

transitions. The microscopic observations for the 50% mixture can be seen in Figure 5.35. Figure 

5.36 shows the observed microscopic observations for the 55% and 60% mixtures in which only 

an cholesteric to isotropic phase transition was observed to within 20 °C below the isotropic to 

cholesteric phase transition. 
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Table 5.12: Region IV phase sequences from optical cross-polarized microscopy for the 50%, 55%, and 60% cholesteryl chloride 

mixtures.  

 

These are the observed phase sequences from cross-polarized microscopy. For (b) the 55% mixture and (c) the 60% mixture, 

neither blue phases nor smectic phases were observed in the visible between room temperature and above. Interestingly, unlike 

the mixtures between 25% and 60%, (a) the 50% mixture has two smectic phases that are closer to the isotropic phase relative 

to pure cholesteryl oleyl carbonate. 

 

(a) 50% mixture 

 

Heating 

 

SmC

 42.1 °C
→     SmA  

46.4 °C
→    N∗    

52.1 °C
→    Isotropic  

 

 
 

Cooling 

 

SmC

40.7 °C
←     SmA  

44.3 °C
←    N∗    

   51.4 °C
←     Isotropic  

 

 

(b) 55% mixture 

 

Heating and Cooling 

 

N∗
53.2 °C
←   Isotropic  

 

 

(c) 60% mixture 

 

Heating and Cooling 

 

N∗
54.8 °C
←   Isotropic  
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(a)  51.5 °C  (b)  50.5 °C (c)  47.0 °C  (d)  45.0 °C 

    

 (e)  43.0 °C 
 (f)  43.0 °C 

       (Sheared) 
 (g)  41.0 °C  (h)  39.0 °C 

    

 (i)  39.0 °C 

       (Sheared) 
 (j)  29.0 °C 

 (k)  29.0 °C 

       (Sheared) 
 (l)  39.0 °C 

    

 (m)  41.0 °C 
 (n)  45.0 °C 

(just turned 45 °C) 

 (o)  45.0 °C 

(after holding) 
 (p)  49.0 °C 

    

 (q)  49.0 °C  

(After Shearing) 
 (r)  51.0 °C  (s)  51.5 °C  (t)  51.8 °C 

    

Figure 5.35: Region IV optical microscopy images for the 50% cholesteryl chloride mixture at select temperatures. 

 

Images captured under transmission. Reflectance, unlike for Regions I through III, did not give clear images of the textures. The 

sample was initially heated into the isotropic phase. Indices (a) through (k) are on cooling. Indices (k) through (t) are on heating. 

The white dots observed in the isotropic phase are dust on the slide and cover slip. Index (e) sheared in (f) is indicative of a 

smectic A phase, where the background appears isotropic when it is planar aligned. Upon shearing the observed texture appears. 

Based on the phase sequence, index (g) and lower temperatures are in the smectic C phase. 
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55% Cholesteryl Chloride 60% Cholesteryl Chloride 

Cooling Heating Cooling Heating 

(a) 52.15 °C (f) 47.00 °C (k) 54.8 °C (p) 40.00 °C 

    

(b) 53.10 °C 
(g) 47.00 °C 

(Sheared) 
(l) 54.47 °C (q) 53.10 °C 

    

(c) 51.00 °C (h) 52.00 °C (m) 54.00 °C (r) 53.35 °C 

    

(d) 37.00 °C (i) 52.9 °C (n) 35.00 °C (s) 54.60 °C 

    

(e) 27.00 °C (j) 53.1 °C 
(o) 35.00 °C 

(Sheared) 
(t) 54.7 °C 

    

Figure 5.36: Region IV optical microscopy images for the 55% and 60% cholesteryl chloride mixtures at select temperatures.  

 

Selected images captured under transmission. Neither blue phases nor smectic phases were observed on reflectance and 

transmission. Transmission for Region IV mixtures gave more detailed textures for phase identification 61. Between each 

temperature, the magnitude of the heating or cooling rates were at most 0.2 °C /min. Indices (a) through (j) are for the 55% 

mixture. Indices (k) through (t) are for the 60% mixture. The temperature rate did not exceed 0.2 K per minute for temperature 

changes above room temperature (above 21 °C) 
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Region IV mixtures have almost the same temperature dependence for the relaxation 

frequency 𝑓𝑟 . This is seen in Figure 5.37. As with the other regions, the relaxation frequency 

around each mixtures isotropic-mesogenic phase transition increases with composition. This 

means that as composition is increased, the 10 and 100 kHz data would be expected to be closer 

to the plateau, static permittivity range of frequencies. 

The 100 kHz thermal cycling measurements are seen in Figure 5.38. As with Region III, 

the normalized relative dielectric response for Region IV is similar for all three mixtures. The 

major difference among Region III mixtures at 100 kHz is the discontinuity at the isotropic to 

cholesteric phase transition. 

The 10 kHz thermal cycling measurements are seen in Figure 5.39. All three mixtures are 

strikingly different from each other on both heating (Figure 5.39a) and cooling (Figure 5.39b). 

This is evident in the phase sequences shown in Table 5.12. 

The phase behavior of the 50% mixture is interesting in its variety. On both heating and 

cooling, the dielectric behavior at 10 kHz (Figure 5.39) shows multiple peaks below the isotropic 

phase. On cooling (Figure 5.39b), the dielectric peak that is -7 °C from the isotropic to cholesteric 

transition matches the transition observed below the cholesteric phase observed under the 

microscope at -7.1 °C from the isotropic to cholesteric transition (see Figure 5.35e). The dielectric 

peak at -10 °C from the isotropic to cholesteric transition matches the transition observed under 

the microscope at -7.1 °C from the isotropic phase (see Figure 5.35, parts (g) and (h)). The textures 

observed below the cholesteric phase under the microscope matched closely to the examples given 

of Smectic A and C, respectively, in the book by Ingo Dierking 61. The dielectric peak to 

microscopy observation textures was similar on heating. 
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The 55% and 60% mixtures at 10 kHz on cooling have a dielectric response (Figure 5.39b) 

that continuously decreases at least -12 °C from the isotropic phase. Compared to Figure 5.36 from 

the optical microscopy observations, this corresponds to the cholesteric phase. Based on the pattern 

observed thus far on cooling at 10 kHz, when a phase begins to transition to another phase, the 

dielectric data begin to change the sign of the slope. 
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Figure 5.37: Region IV temperature dependence of the relaxation frequency.  

 

The relaxation frequency 𝑓𝑟 is a fitting parameter that was discussed for the 12% mixture in Section 5.2.2. Parametrically, it 

corresponds to the peak of the semicircle discussed in Figure 5.6 for the 12% mixture. Standard errors are shown. 

 

For Region III, as with Region II, the relaxation processes are nearly identical to each other. With increasing composition, the 

relaxation frequencies shift up such that 100 kHz is closer to the plateau frequency region. 
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(a) Heating of 𝜀′ with an inset of 𝜀′′ 
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(b) Cooling of 𝜀′ with an inset of 𝜀′′ 

-12 -8 -4 0 4 8
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

-12 -8 -4 0 4 8

0.5

1.0

1.5

2.0

2.5

3.0

Normalized Dielectric Loss

'
'/
'

' IM

T - T
IM

 (K)

Mesophases Isotropic

 50 % CC

 55 % CC

 60 % CC

'
/

' IM

T - T
IM

 (K)

Mesophases
Isotropic

 

Figure 5.38: Region IV permittivity at 100 kHz. 

 

At this frequency, the mesophase measurements are still near the relaxation frequencies of each mesophase. This results in the 

monotonic drop in the permittivity. Despite the differences among the phase sequences among Region IV mixtures, all have 

nearly identical relative temperature dependencies. 
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(a) Heating of 𝜀′ with an inset of 𝜀′′ 
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(b) Cooling of 𝜀′ with an inset of 𝜀′′ 
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Figure 5.39: Region IV permittivity at 10 kHz. 

 

At this frequency, the differences among the three mixtures are apparent. The 55% and 60% mixtures each have a relatively 

constant slope which corresponds roughly the microscopic observations in which only one phase transition was observed.  
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5.4 Conclusions 

5.4.1 Comparison of Phase Diagrams 

Figure 5.40 shows a phase diagram generated from the dielectric measurements on cooling 

at 10 kHz in part (a). Part (b) of Figure 5.40 presents the zoomed-in version of Figure 5.16b at the 

same scale as Figure 5.40a. 

The transition temperatures 𝑇𝐼𝑀 from the familiar high temperature isotropic phase and the 

lower mesophases are estimated from the 100 kHz data when no obvious discontinuity appears for 

the 10 kHz measurements. The mesophase to mesophase transitions were estimated by looking at 

the peaks observed relative to 𝑇𝐼𝑀 on cooling at 10 kHz for the 0% through 30% mixtures. The 

samples were not aligned. The presumed smectic phases and indeterminate region estimates may 

be incorrect. 

The resultant phase diagrams in Figure 5.40 are now compared to the one produced by 

McKinnon et. al., shown in Figure 5.10, which served as a guide in this dissertation 59. Two 

important differences are noted. First, they estimate a narrower temperature range of blue phases 

between the isotropic and cholesteric phases. Second, their measurements were only taken near 

the isotropic to cholesteric (or blue phase) transitions. Both of my dielectric measurements and 

optical microscopy results which explored a broad range of temperatures (shown in Figure 5.40) 

show a smectic phase for the 50% mixture close to the isotropic phase. The cholesteric phase at 

the 50% mixture has a narrow temperature range. The 45% and 55% mixtures do not show a 

smectic. Although their cholesteryl chloride and cholesteryl oleyl carbonate could have been of 

either different batches or different purities, the observation of a smectic phase so close to the 

isotropic phase was unexpected. 

Figure 5.40b shows the optical microscopy phase diagram of Figure 5.16b zoomed in to 

the same scale as the dielectric phase diagram of Figure 5.40a. The isotropic to mesophase 
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transition temperature estimates 𝑇𝐼𝑀 match relatively well between parts (a) and (b). The transition 

temperature estimates between blue phases I and II do not match well below the 12% mixture. A 

higher temperature resolution is needed due to the small discontinuities between blue phases. 

However, due to the experimental limitations this was not achieved. 

Although the smectic phases were not of interest to this dissertation, it was surprising to 

see two smectic phases form for the 50% composition within 5 K of the isotropic to cholesteric 

transition. The optical microscopy results in Figure 5.40b confirm that the indeterminate region 

for the dielectric estimates is in fact a continuation of the smectic C phase. Smectic phases require 

alignment for dielectric studies in order to obtain reliable results. 
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(a) Dielectric phase diagram on cooling at 10 kHz. For smectic phases A and C as well as the indeterminate region, 

definitive results require sample alignment. The samples were not aligned by any external field beyond the applied 

AC field. 

0 10 20 30 40 50 60
25

30

35

40

45

50

55

Indeterminate

Sm A?

BPI

Isotropic

BPII

Cholesteric

 

 Dielectric Phase Diagram on Cooling 

T
e

m
p

e
ra

tu
re

 o
n

 C
o

o
lin

g
 (
C

)

Composition (% Cholesteryl Chloride)

Sm C?

Not Recorded

 

(b) Results from cross-polarized microscopy. Values given are from when the phase fully formed. 
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Figure 5.40: Proposed phase diagram based on dielectric measurements. Measurements on cooling. 
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5.4.2 A Second Study in Varying Chirality 

This chapter constitutes a second study in the effects of varying chirality on dielectric 

measurements. As mentioned in the introduction to this chapter, one other study has investigated 

the effects of varying chirality by looking at mixtures of two similar molecules, except that one is 

the chiral variant of the other (see Figure 5.2 for their results) 36. Both molecules had prominent 

dipole moments and exhibited pretransitional curvature that was of interest. The phase sequence 

for Leys et. al. was the same on heating as cooling 36. This chapter took a slightly different 

approach in that both molecules were of opposite chirality. 

The phase sequence of my mixtures was monotropic for the low compositions. This was 

neither predicted nor expected. On heating, a cholesteric to isotropic transition was observed for 

all mixtures. It was on cooling that the blue phases were present. Figure 5.4a clearly shows this 

difference in the dielectric measurements of a representative mixture. For the 25% and below 

mixtures of cholesteryl oleyl carbonate with cholesteryl chloride, a broad bump in the dielectric 

data appears for the 10 kHz cooling runs at temperatures below the isotropic phase. For the 12% 

mixture, this corresponds to 5 K below the phase transition. From the optical microscopy 

observations (see Figure 5.9), the dielectric peak of this bump corresponded to when the 

cholesteric phase almost fully formed. The temperature range between this peak and the isotropic 

phase at 10 kHz on cooling corresponded to the full development of the cholesteric phase with 

respect to the microscopy observations. This temperature range decreased with increasing amounts 

of cholesteryl chloride (that is, decreasing chirality). Although optical microscopy results showed 

no blue phase at 25% through 35%, this bump appeared in the dielectric data through the 35% 

mixture. This leads to the conclusion that a blue phase exists through the 35%, however based on 

the progression of colors of the blue phase between 0% and 20%, these must lie within the infrared. 
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The progression of the temperature range of this bump can be seen on cooling at 10 kHz in Regions 

I, II, and III (Figures 5.23b, 5.30b, and 5.34b, respectively). 

Although unexpected, the monotropic phase sequences below the 35% mixture allowed for 

the observation of the cholesteric to isotropic phase on heating and the isotropic to blue phase on 

cooling. From Figure 5.14 on heating, the discontinuity changes in accordance with Brazovskii 

and Dimitriev 62, 63. On cooling in Figure 5.14, the discontinuity is relatively small below 35% 

cholesteryl chloride, and with the disappearance of the blue phases above the 40% composition 

the discontinuity at the transition increases. 

There was a striking difference between the 10 kHz measurements and the 100 kHz 

measurements. The low frequency measurements gave information on the dielectric behavior of 

the phase transitions (see Figures 5.23, 5.30, 5.34, and 5.39). While the high frequency 

measurements definitively showed the isotropic to mesophase transition, the shape of the curve 

was almost linear in the mesophase but with a different slope negative to that of the isotropic phase 

(see Figures 5.22, 5.29, 5.33, and 5.38). 

Also, at the high frequency measurements (see Figures 5.22, 5.29, 5.33, and 5.38), the 

mesophase slopes fanned out as a function of chirality. A look at the frequency domain allows for 

a better understanding of this. First, the relaxation frequencies are shown for Regions I, II, III, and 

IV (see Figures 5.21, 5.28, 5.32, and 5.37). Most of the mesophase measurements have relaxation 

frequencies that are near 100 kHz. Secondly, a look at the representative 12% mixtures frequency 

plots (see Figures 5.5 and 5.6) reveals three potential issues to be aware of that were discussed in 

Section 2.2. In Figure 5.6b, the dielectric loss shows low frequency interference below 1 kHz. For 

a positive value this is attributed to ionic conductivity, for a negative value this is attributed 

inductive interference 34. The 10 kHz measurements are mostly safe, in that they are far from either 
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extreme condition (low frequency interference, and higher frequency relaxation peak). The fanning 

out of the 100 kHz measurements (see Figures 5.22, 5.29, 5.33, and 5.38) may be, in part, due to 

a relaxation peak being approached near 100 kHz on increasing composition. 

5.4.3 A Comparison Theoretical Predictions 

Figure 5.41 is a schematic of a theoretical prediction that describes the formation of the 

blue phases with respect to the discontinuity of the transition. The schematic uses a generic 

representation of the discontinuity in the form of the difference between the transition temperature 

T𝐼𝑀  (estimated from the data) and the critical temperature T∗ (a fitting parameter discussed in 

Chapter 4). An equivalent discontinuity, specific to this dissertation, is the permittivity 𝛥𝜀′ and 

𝛥𝜀′′ (Figures 5.14 and 5.15, respectively). 

As chirality is gradually increased from a low chirality, a transition from the high 

temperature isotropic phase to the cholesteric phase is usually observed as shown by the green, 

thick solid line in Figure 5.41. Brazovskii and Dimitriev predicted that as the chirality is increased 

for the cholesteric phase, the transition should become second order, represented by the green, 

thick line in Figure 5.41 62, 63. 

Brazovskii and Dimitriev further predicted that the second order transition between high 

temperature isotropic phase to the cholesteric is never reached 62, 63. As shown by the black, thick 

dash-dotted line in Figure 5.41, the transition from isotropic to cholesteric is interrupted by the 

formation of a new phase. This new phase takes better advantage of the cubic term in the free 

energy expansion discussed in both Section 1.2.2.1 and Figure 1.6. At high chirality, a lower free 

energy minimum is allowed. The black, thick line also shows that the transition with the high 

temperature phase ends at a critical point 62, 63. 
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The new transition from the high temperature phase represented by the black, thick solid 

line in Figure 5.41 is for an isotropic to isotropic phase. In contrast, the transition represented by 

the green, thick, solid line in Figure 5.41 is for an isotropic to anisotropic transition. Such a 

transition is first order. 

The new phase that forms has, instead of the single helical periodicity of a cholesteric phase, 

three dimensions of helical periodicity. This three dimensions of periodicity gives it a cubic 

structure. Cubic structures are treated as being isotropic, whereas the high temperature isotropic 

phase is amorphous. 

Since Brazovskii and Dimitriev’s theoretical framework was published, it is now known 

that there are three of these phases, the so called blue phases I, II and III. The thin, red lines in 

Figure 5.41 shows a schematic of these three phases between the high temperature isotropic and 

the cholesteric phase. Not all three are necessarily present together for all phase sequences. I 

remind the reader from Section 1.2.2.1, blue phases I and II are cubic isotropic (simple and body-

centered, respectively). Blue phase III is an amorphous isotropic. The transition between the 

isotropic phase and any one of the blue phases is between two dielectrically isotropic phases. 

Figure 4.15 shows heating runs at both measuring frequencies. The discontinuity is 

generally larger for higher compositions which corresponds to regions of lower chirality where the 

structure of the cholesteric phase, N*, has a globally minimum free energy. Brazovskii and 

Dimitriev’s conclusions are supported by my data of the estimated discontinuities 𝛥𝜀′ and 𝛥𝜀′′ 

(Figures 5.14 and 5.15, respectively) where the magnitude of each is generally increasing. The 

temperature dependence within each phase can of course be different via changes in slope and so 

forth. This results in a smaller discontinuity than between any isotropic phase and the anisotropic 

cholesteric phase. 
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At a high enough chirality there is a transition between two amorphous isotropic phases: 

blue phase III and the familiar high temperature isotropic phase. At some critical point on the 

chirality scale a critical point is reached. There is no transition beyond the critical point between 

blue phase III and the high temperature isotropic phase. 

 

Figure 5.41: A schematic of the predictions of Brazovskii and Dimitriev where the difference between Tc and T* represents the 

discontinuity in the phase transition. 

 

 Thick, green lines (both solid and dotted) – Expected behavior between the isotropic and cholesteric phase. 

The solid line is the actual behavior. 

 Black, thick, dash-dot line – the predicted development of a new phase ending at a critical point (the thick 

black dot). 

 Red, thin, solid lines – Beyond the predition of Brazovskii and Dimitriev, the one phase is actually three 

distinct phases that develop between the isotropic and cholesteric phases at high enough chiralities. As 

discussed in this chapter, those phaes are blue phases I, II, and III.  
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CHAPTER 6 CONCLUDING THOUGHTS AND FUTURE WORK 

This dissertation set out to study the dielectric properties of nematic liquid crystals in both 

the achiral and chiral limits. A model was developed for the achiral limit to describe pretransitional 

curvature in the dielectric permittivity on the isotropic side of the transition that had not been 

previously described by theory. With the addition of chirality, new phases eventually develop 

called blue phases which were studied with dielectric measurements. Additionally, cross-polarized 

microscopy was utilized to corroborate which phases were seen under the dielectric measurements. 

6.1 Achiral Nematics 

The generalization of the order parameter in Section 2.3.2 has led to a successful 

macroscopic description of the pretransitional curvature. The initial form of the model shown 

Equation 4.2 ran into fitting difficulties in the form of either a double minimum in chi-square space 

or a single minimum with unrealistic standard errors. This was overcome by looking at a second 

order expansion and observing the relationships among the fitting parameters. An expansion to the 

three-halves order was found to best describe the data when looked at under range shrinking. 

Because it was desired to extract original parameters C and D, Equation 4.2 eventually transformed 

into a hierarchical fitting process that overcame any ambiguities in the parameter estimates. 

As discussed in Section 4.4.2, two groups performed dielectric measurements on the nCB 

series. From the fitting parameter results versus carbon chain length n, it is seen that the 

hierarchical fitting approach not only describes an individual molecules dielectric behavior well 

in the isotropic phase, but also well over a series of molecules. 

For future work, this model can be extended to the nematic side of the phase transition. 

The theoretical framework for the nematic side is similar to what was setup for the isotropic side 

in Section 2.3.2, Equations 2.17 through 2.26. Unlike the isotropic side of the transition, 〈𝑄𝛼𝛽〉 is 

not equal to zero. 
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6.2 Chiral Nematics  

As discussed in Section 5.4.2, this is the second study to look at the effect of varying 

chirality on dielectric measurements. Two main topics motivated this section. First, it was of 

interest if the pretransitional curvature in the isotropic phase varied with composition. Second, it 

was of interest how well the dielectric signature of blue phases I, II, and III differed from the high 

temperature isotropic phase. 

While pretransitional curvature appeared at 100 kHz, in the low frequency plateau 

measurements (recall in Section 2.2 that this is a measurement away from a relaxation peak) no 

obvious pretransitional curvature was seen. Without that, it is difficult to attest whether or not 

chirality is playing any role in counteracting anti-parallel dipole formation. 

Despite the negative result on pretransitional curvature, the transition sequences were 

unexpectedly monotropic. On heating at the highest of chiralities (0% through 35% mixtures), only 

the cholesteric to isotropic phase transition was observed. This was verified under cross-polarized 

microscopy where the observed textures were referenced to a book on liquid crystalline textures. 

As mentioned in Section 5.4.3, this led to a direct confirmation of a theoretical prediction on how 

the discontinuity from cholesteric to isotropic changes as a function of changing chirality. 

Future work can be divided into two categories. Cholesteryl chloride spontaneously 

decomposed. A very narrow cholesteric phase followed by a very wide smectic phase was 

unexpectedly present for the 50% sample. 

First, any future work using cholesteryl chloride needs to investigate first why the high 

composition cholesteryl chloride mixtures spontaneously crystalize and decompose under an 

applied AC field. From optical microscopy observations (with no applied field) it was observed 

that cholesteryl chloride spontaneously crystalizes. However, repeated thermal cycling for optical 
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observations did not destroy the sample. When the same thermal cycling is repeated inside of the 

capacitor setup at an applied AC field, the sample decomposes. 

Second, the 50% mixture had unexpected smectic A and C phases near the isotropic phase, 

where near means within 10 K, as shown in Figures 5.16 and 5.40. No smectic phase was observed 

for the 25% through 45% mixtures and for the 50% and 60% mixtures. Additional work can be 

done to find the phase boundaries of the smectic phases. 
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ABSTRACT 

DIELECTRIC ANOMALIES OF BOTH CHIRAL AND ACHIRAL 

NEMATOGENS NEAR THE ISOTROPIC TO MESOGENIC PHASE 

TRANSITION  

 by  

GARRETT J. GODFREY 

August 2016 

Advisor: Dr. Paul H. Keyes 

Major: Physics 

Degree: Doctor of Philosophy 

The dielectric properties of nematic liquid crystals were studied in both the achiral and 

chiral limits. For achiral nematics, the literature documents that pretransitional curvature occurs 

for polar molecules on both sides of the nematic and isotropic phase transition. This curvature is 

due to anti-parallel dimer formation. However, past models have failed to quantitatively describe 

pretransitional curvature. Through a generalization of the order parameter, a macroscopic 

model has been developed to mathematically describe the pretransitional curvature on the isotropic 

side of the transition. The new model was fitted to dielectric data from the literature. Meaningful 

parameter estimates were extracted. 

The dielectric response of chiral nematic systems has not been well studied in the literature. 

A system with tunable chirality was dielectrically studied by mixing two highly chiral liquid 

crystals: cholesteryl oleyl carbonate (left handed) and cholesteryl chloride (right handed). An 

apparatus was designed and built to systematically measure the dielectric response of the mixtures. 

Optical cross-polarized microscopy was used to identify the transition temperatures of each phase. 

The transition temperatures were then correlated with the dielectric response.  
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The initial intentions of studying chiral systems was two-fold: to see how chirality played 

a role in the pretransitional curvature, and to see if the blue phases were dielectrically 

distinguishable. While the initial intentions were null and indecisive, respectively, interesting 

results were obtained. First, the phase transitions were monotropic for the highest chirality 

mixtures. Second, the estimated discontinuity at the isotropic to mesogenic transition followed 

theoretical predictions that had not been tested for dielectric measurements. 
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